The electrochemical CO reduction into formate acid over Pd-based catalysts under a wide potential window is a challenging task; CO poisoning commonly occurring on the vulnerable surface of Pd must be overcome. Herein, we designed a two-dimensional (2D) AuNP-in-PdNS electrocatalyst, in which the Au nanoparticles are intercalated in Pd nanosheets, for formate production under a wide potential window from -0.1 to -0.7 V versus a reversible hydrogen electrode. Based on the X-ray absorption spectra (XAS) characterizations, CO accumulation detection, and CO stripping voltammetry measurements, we observed that the intercalated Au nanoparticles could effectively avoid the CO formation and boost the formate production on the Pd nanosheet surface by regulating its electronic structure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c23430DOI Listing

Publication Analysis

Top Keywords

formate production
12
wide potential
12
potential window
12
production wide
8
intercalated gold
4
gold nanoparticle
4
nanoparticle palladium
4
palladium nanosheet
4
nanosheet avoiding
4
avoiding poisoning
4

Similar Publications

Photocatalytic selective oxidation of glycerol to formic acid and formaldehyde over surface cobalt-doped titanium dioxide.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:

Glycerol is one of the most important biomass platform compounds that is a by-product of biodiesel production, and the selective cleavage of the CC bond of glycerol to produce liquid hydrogen carriers (i.e., formic acid and formaldehyde) offers a viable strategy to alleviate the currently faced energy shortages.

View Article and Find Full Text PDF

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

Engineering Lattice Dislocations of TiO Support of PdZn-ZnO Dual-Site Catalysts to Boost CO Hydrogenation to Methanol.

Angew Chem Int Ed Engl

December 2024

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.

CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases.

View Article and Find Full Text PDF

Pressure regulated CO electrolysis on two-dimensional BiOSe.

Chem Commun (Camb)

January 2025

Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

The electrochemical reduction of carbon dioxide (CORR) offers potential for sustainable production and greenhouse gas mitigation, particularly with renewable energy integration. However, its widespread application is hindered by expensive catalysts, low selectivity, and limited current density. This study addresses these challenges by developing a low-mass-loading two-dimensional (2D) BiOSe catalyst chemical vapor deposition (CVD).

View Article and Find Full Text PDF

Electrocatalytic urea synthesis from carbon dioxide (CO2) and nitrate (NO3-) offers a promising alternative to traditional industrial methods. However, current catalysts face limitations in the supplies of CO* and Nrelated* intermediates, and their coupling, resulting in unsatisfactory urea production efficiency and energy consumption. To overcome these challenges, we carried out tandem electrosynthesis approach using ruthenium dioxide-supported palladium-gold alloys (Pd2Au1/RuO2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!