Background: An increasing amount of research has led to the positioning of nucleoside diphosphate kinases (NDPK/NDK) as key metabolic enzymes among all organisms. They contribute to the maintenance the intracellular di- and tri- phosphate nucleoside homeostasis, but they also are involved in widely diverse processes such as gene regulation, apoptosis, signal transduction and many other regulatory roles.
Objetive: Examine in depth the NDPKs of trypanosomatid parasites responsible for devastating human diseases (e.g., Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp.) which deserve special attention.
Methods: The earliest and latest advances in the topic were explored, focusing on trypanosomatid NDPK features, multifunctionality and suitability as molecular drug targets.
Findings: Trypanosomatid NDPKs appear to play functions different from their host counterparts. Evidences indicate that they would perform key roles in the parasite metabolism such as nucleotide homeostasis, drug resistance, DNA damage responses and gene regulation, as well as host-parasite interactions, infection, virulence and immune evasion, placing them as attractive pharmacological targets.
Main Conclusions: NDPKs are very interesting multifunctional enzymes. In the present review, the potential of trypanosomatid NDPKs was highlighted, raising awareness of their value not only with respect to parasite biology but also as molecular targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833001 | PMC |
http://dx.doi.org/10.1590/0074-02760210339 | DOI Listing |
Unlabelled: Oncogenes hyperactive lactate production, but the mechanisms by which lactate facilitates tumor growth are unclear. Here, we demonstrate that lactate is essential for nucleotide biosynthesis in pediatric diffuse midline gliomas (DMGs). The oncogenic histone H3K27M mutation upregulates phosphoglycerate kinase 1 (PGK1) and drives lactate production from [U- C]-glucose in DMGs.
View Article and Find Full Text PDFUnlabelled: Guanosine triphosphate (GTP) is essential for macromolecular biosynthesis, and its intracellular levels are tightly regulated in bacteria. Loss of the alarmone (p)ppGpp disrupts GTP regulation in , causing cell death in the presence of exogenous guanosine and underscoring the critical importance of GTP homeostasis. To investigate the basis of guanosine toxicity, we performed a genetic selection for spontaneous mutations that suppress this effect, uncovering an unexpected link between GTP synthesis and glycolysis.
View Article and Find Full Text PDFNat Commun
January 2025
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
Wall teichoic acids (WTAs) from the major Gram-positive foodborne pathogen Listeria monocytogenes are peptidoglycan-associated glycopolymers decorated by monosaccharides that, while not essential for bacterial growth, are required for bacterial virulence and resistance to antimicrobials. Here we report the structure and function of a bacterial WTAs rhamnosyltransferase, RmlT, strictly required for L. monocytogenes WTAs rhamnosylation.
View Article and Find Full Text PDFJ Dev Biol
November 2024
Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several () mouse alleles and in a mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived point-mutant knockin mouse () allele that expresses a mutant protein lacking transacetylase activity.
View Article and Find Full Text PDFOncoimmunology
December 2025
Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
The adenosinergic pathway converting endogenous ATP to adenosine (ADO) is a major immunosuppressive pathway in cancer. Emerging data indicate that plasma small extracellular vesicles (sEV) express CD39 and CD73 and produce ADO. Using a noninvasive, highly sensitive newly developed assay, metabolism of N-etheno-labeled eATP, eADP or eAMP by ecto-nucleotidases on the external surface of sEV was measured using high pressure liquid chromatography with fluorescence detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!