Graphene-based nanochannels are a popular choice in emerging nanofluidics applications because of their tunable and nanometer-scale channels. In this work, molecular dynamics (MD) simulations were employed both to (i) assess the stability of dry and hydrated graphene nanochannels and (ii) elucidate the properties of water confined in these channels, using replica-scale models with 0.66-2.38 nm channel heights. The use of flexible nanochannel walls allows the nanochannel height to relax in response to the solvation forces arising from the confined fluid and the forces between the confining surfaces, without the need for application of arbitrarily high external pressures. Dry nanochannels were found to completely collapse if the initial nanochannel height was less than 2 nm, due to attractive van der Waals interactions between the confining graphene surfaces. However, the presence of water was found to prevent total nanochannel collapse, due to repulsive hydration forces opposing the attractive van der Waals force. For nanochannel heights less than ∼1.7 nm, the confining surfaces must be relaxed to obtain accurate hydration pressures and water diffusion coefficients, by ensuring commensurability between the number of confined water layers and the channel height. For very small (∼0.7 nm), hydrated channels a pressure of 231 MPa due to the van der Waals forces was obtained. In the same system, the confined water forms a mobile, liquid monolayer with a diffusion coefficient of 4.0 × 10 cm s, much higher than bulk liquid water. Although this finding conflicts with most classical MD simulations, which predict in-plane order and arrested dynamics, it is supported by experiments and recently published first-principles MD simulations. Classical simulations can therefore be used to predict the properties of water confined in sub-nanometre graphene channels, providing sufficiently realistic molecular models and accurate intermolecular potentials are employed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1nr08275b | DOI Listing |
Catheter Cardiovasc Interv
October 2024
Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
Magn Reson Med
July 2023
Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
Eur J Cardiothorac Surg
August 2022
Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands.
Objectives: A minimally invasive lobectomy (MIL) is the standard treatment for stage I non-small cell lung cancer (NSCLC) in medically operable patients. Stereotactic ablative radiotherapy (SABR) is recommended for inoperable patients and has been proposed as a potential alternative for operable patients as well. Here, we present the results of a feasibility study in preparation for a nationwide retrospective cohort study, comparing outcomes between both treatment modalities.
View Article and Find Full Text PDFClin Exp Allergy
August 2021
Department of Dermatology/Allergology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
Br J Anaesth
June 2021
Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland; University of Geneva, Geneva, Switzerland.
Background: Neonates and infants requiring anaesthesia are at risk of physiological instability and complications, but triggers for peri-anaesthetic interventions and associations with subsequent outcome are unknown.
Methods: This prospective, observational study recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. The primary aim was to identify thresholds of pre-determined physiological variables that triggered a medical intervention.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!