Exposure of a photoreactive single crystal to light with a wavelength offset from its absorption maximum can have two distinct effects. The first is the "direct" effect, wherein the excited state generated in individual chemical species is influenced. The second is the "indirect" effect, which describes the penetration of light into the crystal and hence the spatial propagation and completeness of transformation. We illustrate using the nitro-nitrito isomerization of [Co(NH)NO]Cl(NO) as an example that the direct and indirect effects can be independently determined. This is achieved by comparing the dynamics of macroscopic crystal deformation (bending curvature and crystal elongation) induced by the photochemical reaction when irradiating a crystal at the absorption maximum and at different band edges (above or below the maximum) of the same band. Quantitative description of the macroscopic strain dynamics in comparison with experiments allowed us to suggest that irradiation at different tails of the same absorption band causes isomerization to proceed via different excited states and an additional photochemical reaction (presumably, reverse nitrito-nitro isomerization) can occur on irradiation at the ligand-field band edges.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c03607DOI Listing

Publication Analysis

Top Keywords

excited states
8
dynamics macroscopic
8
macroscopic strain
8
absorption maximum
8
photochemical reaction
8
maximum band
8
band edges
8
crystal
5
relating excited
4
states dynamics
4

Similar Publications

Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over-oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo-irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42-, the electron transfer from OH- to excited-state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+.

View Article and Find Full Text PDF

Determination of alkali metal elements in solid biomass fuel by laser-induced breakdown spectroscopy: Analysis and reduction of chemical matrix effects.

Anal Chim Acta

February 2025

School of Electric Power Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, Guangdong, 510641, China. Electronic address:

Background: Rapid and accurate detection of the biomass potassium (K) content in biomass is crucial for mitigating ash deposition and fouling issues in biomass fuel combustion processes. Laser-induced breakdown spectroscopy (LIBS) offers a promising approach for rapid analysis of biomass elemental. However, the accuracy of LIBS detection is susceptible to chemical matrix effects.

View Article and Find Full Text PDF

Efficient Degradation of Ciprofloxacin in Water Using nZVI/g-CN Enhanced Dielectric Barrier Discharge Plasma Process.

Environ Res

January 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:

Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-CN)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP).

View Article and Find Full Text PDF

Unusual high fluorescence of a 7,7'-diazaisoindigo derivative: A photophysical study.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain. Electronic address:

7,7'-Diazaisoindigos are π-conjugated compounds but with poor luminescence properties. Their poor luminescence is generally attributed to the twisting around the central C-C bond in the excited state which favors non-radiative decay. We have found an unusual high fluorescence quantum yield (Φ ≈ 15 %) in a N,N‑Octyl-7,7'-diazaisoindigo derivative incorporating two triphenylamine (TPA) subunits at 5,5'-positions (called compound 12).

View Article and Find Full Text PDF

Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!