Glaucoma, one of the leading causes of irreversible blindness, is commonly associated with elevated intraocular pressure due to impaired aqueous humour (AH) drainage through the trabecular meshwork. The aetiological mechanisms contributing to impaired AH outflow, however, are poorly understood. Here, we identified the secreted form of vasorin, a transmembrane glycoprotein, as a common constituent of human AH by mass spectrometry and immunoblotting analysis. ELISA assay revealed a significant but marginal decrease in vasorin levels in the AH of primary open-angle glaucoma patients compared to non-glaucoma cataract patients. Human trabecular meshwork (HTM) cells were confirmed to express vasorin, which has been shown to possess anti-apoptotic and anti-TGF-β activities. Treatment of HTM cells with vasorin induced actin stress fibres and focal adhesions and suppressed TGF-β2-induced SMAD2/3 activation in HTM cells. Additionally, cobalt chloride-induced hypoxia stimulated a robust elevation in vasorin expression, and vasorin suppressed TNF-α-induced cell death in HTM cells. Taken together, these findings reveal the importance of vasorin in maintenance of cell survival, inhibition of TGF-β induced biological responses in TM cells, and the decreasing trend in vasorin levels in the AH of glaucoma patients suggests a plausible role for vasorin in the pathobiology of ocular hypertension and glaucoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980963PMC
http://dx.doi.org/10.1111/jcmm.17229DOI Listing

Publication Analysis

Top Keywords

htm cells
16
trabecular meshwork
12
vasorin
9
role vasorin
8
anti-apoptotic anti-tgf-β
8
vasorin levels
8
glaucoma patients
8
glaucoma
5
cells
5
vasorin anti-apoptotic
4

Similar Publications

High-Efficiency (21.4%) Carbon Perovskite Solar Cells via Cathode Interface Engineering by using CuPc Hole-Transporting Layers.

Angew Chem Int Ed Engl

January 2025

EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.

Carbon perovskite solar cells (C-PSCs) represent a promising photovoltaic technology that addresses the long-term operating stability needed to compete with commercial Si solar cells. However, the poor interface contacts between the carbon electrode and the perovskite result in a gap between C-PSC's performances and state-of-the-art PSCs based on metallic back electrodes. In this work, Cu (II) phthalocyanine (CuPc) was rediscovered as an effective hole-transporting material (HTM) to be coupled with carbon electrodes.

View Article and Find Full Text PDF

Objective: Several studies have discussed the relationship between cholesterol and gallstones, and high-density lipoprotein cholesterol (HDL-C) as a representative of this has been addressed in various diseases. The metric neutrophil to high-density lipoprotein cholesterol ratio (NHR) derived from HDL-C has attracted much attention. The purpose of this article is to examine the relationship between NHR and gallstones in a population of American adults.

View Article and Find Full Text PDF

Comparative Study of Iminodibenzyl and Diphenylamine Derivatives as Hole Transport Materials in Inverted Perovskite Solar Cells.

Chemistry

January 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.

Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.

View Article and Find Full Text PDF

Towards all inorganic antimony sulphide semitransparent solar cells.

Sci Rep

January 2025

Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.

NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell.

View Article and Find Full Text PDF

Glaucoma is a leading cause of irreversible blindness, often associated with elevated intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction. Diabetes mellitus (DM) is recognized as a significant risk factor for glaucoma; however, the molecular mechanisms through which hyperglycemia affects TM function remain unclear. This study investigated the impact of high glucose on gene expression in human TM (HTM) cells to uncover pathways that contribute to TM dysfunction and glaucoma pathogenesis under diabetic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!