While contrast-enhanced fluid-attenuated inversion recovery (FLAIR) has long been regarded as an adjunct sequence to evaluate leptomeningeal disease in addition to contrast-enhanced T1-weighted imaging, it is gradually being used for more diverse pathologies beyond leptomeningeal disease. Contrast-enhanced FLAIR is known to be highly sensitive to low concentrations of gadolinium within the fluid. Accordingly, recent research has suggested the potential utility of contrast-enhanced FLAIR in various kinds of disease, such as Meniere's disease, seizure, stroke, traumatic brain injury, and brain metastasis, in addition to being used for visualizing glymphatic dysfunction. However, its potential applications have been reported sporadically in an unorganized manner. Furthermore, the exact mechanism for its superior sensitivity to low concentrations of gadolinium has not been fully understood. Rapidly developing magnetic resonance technology and unoptimized parameters for FLAIR may challenge its accurate application in clinical practice. This review provides the fundamental mechanism of contrast-enhanced FLAIR, systematically describes its current and potential clinical application, and elaborates on technical considerations for its optimization. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 5.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.28117DOI Listing

Publication Analysis

Top Keywords

contrast-enhanced flair
12
contrast-enhanced fluid-attenuated
8
fluid-attenuated inversion
8
inversion recovery
8
leptomeningeal disease
8
low concentrations
8
concentrations gadolinium
8
contrast-enhanced
6
flair
5
recovery neuroimaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!