Objective: A reliable estimation of prostate volume (PV) is essential to prostate cancer management. The objective of our multi-rater study was to compare intra- and inter-rater variability of PV from manual planimetry and ellipsoid formulas.
Methods: Forty treatment-naive patients who underwent prostate MRI were selected from a local database. PV and corresponding PSA density (PSAd) were estimated on 3D T2-weighted MRI (3 T) by 7 independent radiologists using the traditional ellipsoid formula (TEF), the newer biproximate ellipsoid formula (BPEF), and the manual planimetry method (MPM) used as ground truth. Intra- and inter-rater variability was calculated using the mixed model-based intraclass correlation coefficient (ICC).
Results: Mean volumes were 67.00 (± 36.61), 66.07 (± 35.03), and 64.77 (± 38.27) cm with the TEF, BPEF, and MPM methods, respectively. Both TEF and BPEF overestimated PV relative to MPM, with the former presenting significant differences (+ 1.91 cm, IQ = [- 0.33 cm, 5.07 cm], p val = 0.03). Both intra- (ICC > 0.90) and inter-rater (ICC > 0.90) reproducibility were excellent. MPM had the highest inter-rater reproducibility (ICC = 0.999). Inter-rater PV variation led to discrepancies in classification according to the clinical criterion of PSAd > 0.15 ng/mL for 2 patients (5%), 7 patients (17.5%), and 9 patients (22.5%) when using MPM, TEF, and BPEF, respectively.
Conclusion: PV measurements using ellipsoid formulas and MPM are highly reproducible. MPM is a robust method for PV assessment and PSAd calculation, with the lowest variability. TEF showed a high degree of concordance with MPM but a slight overestimation of PV. Precise anatomic landmarks as defined with the BPEF led to a more accurate PV estimation, but also to a higher variability.
Key Points: • Manual planimetry used for prostate volume estimation is robust and reproducible, with the lowest variability between readers. • Ellipsoid formulas are accurate and reproducible but with higher variability between readers. • The traditional ellipsoid formula tends to overestimate prostate volume.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-022-08554-4 | DOI Listing |
Front Immunol
January 2025
Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States.
Introduction: Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia.
View Article and Find Full Text PDFAdv Radiat Oncol
February 2025
Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
Purpose: Ultrahypofractionation presents challenges for a subset of high-risk prostate cancer patients due to the large planning target volume (PTV) margin required for the seminal vesicles. Online adaptive radiation therapy could potentially reduce this margin. This paper focuses on the development, preclinical validation, and clinical testing of online adaptive robotic stereotactic body radiation therapy for this patient group.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China.
Purpose: To develop and validate a prostate-specific membrane antigen (PSMA) PET/CT based multimodal deep learning model for predicting pathological lymph node invasion (LNI) in prostate cancer (PCa) patients identified as candidates for extended pelvic lymph node dissection (ePLND) by preoperative nomograms.
Methods: [Ga]Ga-PSMA-617 PET/CT scan of 116 eligible PCa patients (82 in the training cohort and 34 in the test cohort) who underwent radical prostatectomy with ePLND were analyzed in our study. The Med3D deep learning network was utilized to extract discriminative features from the entire prostate volume of interest on the PET/CT images.
J Control Release
January 2025
Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain. Electronic address:
In this study, we present the first comparative analysis of active and passive drug delivery systems for docetaxel (DTX) in prostate cancer using supramolecular self-assembled micellar nanovectors. Specifically, we developed two novel micelles based on polydiacetylenic amphiphiles (PDA) for passive and active targeting. The active targeting micelles were designed with a prostate-specific membrane antigen (PSMA) ligand, ACUPA, to facilitate recognition by PSMA-positive cancer cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, China.
We intended to investigate the potential of several transitional zone (TZ) volume-related variables for the detection of clinically significant prostate cancer (csPCa) among lesions scored as Prostate Imaging Reporting and Data System (PI-RADS) category 3. Between September 2018 and August 2023, patients who underwent mpMRI examination and scored as PI-RADS 3 were queried from our institution. The diagnostic performances of prostate-specific antigen density (PSAD), TZ-adjusted PSAD (TZPSAD), and TZ-ratio (TZ volume/whole gland prostate volume) were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!