Habitat alterations resulting from land-use change are major drivers of global biodiversity losses. In Africa, these threats are especially severe. For instance, demand to convert land into agricultural uses is leading to increasing areas of drylands in southern and central Africa being transformed for agriculture. In Zimbabwe, a land reform programme provided an opportunity to study the biodiversity response to abrupt habitat modification in part of a 91,000 ha dryland area of semi-natural savannah used since 1930 for low-level cattle ranching. Small-scale subsistence farms were created during 2001-2002 in 65,000 ha of this area, with ranching continuing in the remaining unchanged area. We measured the compositions of bird communities in farmed and ranched land over 8 years, commencing one decade after subsistence farms were established. Over the study period, repeated counts were made along the same 45 transects to assess species' population changes that may have resulted from trait-filtering responses to habitat disturbance. In 2012, avian species' richness was substantially higher (+8.8%) in the farmland bird community than in the unmodified ranched area. Temporal trends over the study period showed increased species' richness in the ranched area (+12.3%) and farmland (+6.8%). There were increased abundances in birds of most sizes, and in all feeding guilds. New species did not add new functional traits, and no species with distinctive traits were lost in either area. As a result, species' diversity reduced, and functional redundancy increased by 6.8% in ranched land. By 2020, two decades after part of the ranched savannah was converted into farmland, the compositions of the two bird communities had both changed and became more similar. The broadly benign impact on birds of land conversion into subsistence farms is attributed to the relatively low level of agricultural activity in the farmland and the large regional pool of nonspecialist bird species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840882 | PMC |
http://dx.doi.org/10.1002/ece3.8612 | DOI Listing |
Infect Dis Model
June 2025
Department of Mathematics, University of Trento, Trento, Italy.
West Nile virus (WNV) is one of the most threatening mosquito-borne pathogens in Italy where hundreds of human cases were recorded during the last decade. Here, we estimated the WNV incidence in the avian population in the Emilia-Romagna region through a modelling framework which enabled us to eventually assess the fraction of birds that present anti-WNV antibodies at the end of each epidemiological season. We fitted an SIR model to ornithological data, consisting of 18,989 specimens belonging to Corvidae species collected between 2013 and 2022: every year from May to November birds are captured or shot and tested for WNV genome presence.
View Article and Find Full Text PDFCureus
December 2024
Department of Biology, College of Science, Polytechnic University of the Philippines, Manila, PHL.
Background: This study investigates the prevalence and intensity of parasitic infections in animal fecal samples collected from Sitio Ibayo, San Mateo, Rizal, Philippines, a suburban community considered a potential sentinel site for zoonotic disease surveillance.
Methods: Using cross-sectional sampling, 132 animal fecal samples were collected in the area exhaustively. Samples were processed through direct smear with saline solution and Lugol's iodine and flotation technique using mini- and fill-FLOTAC.
Biol Lett
January 2025
Manaaki Whenua-Landcare Research, Lincoln, Canterbury 7640, New Zealand.
Mycovores (animals that consume fungi) are important for fungal spore dispersal, including ectomycorrhizal (ECM) fungi symbiotic with forest-forming trees. As such, fungi and their symbionts may be impacted by mycovore extinction. New Zealand (NZ) has a diversity of unusual, colourful, endemic sequestrate (truffle-like) fungi, most of which are ECM.
View Article and Find Full Text PDFProc Biol Sci
January 2025
MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China.
Understanding the impacts of diversity on pathogen transmission is essential for public health and biological conservation. However, how the outcome and mechanisms of the diversity-disease relationship vary across biological scales in natural systems remains elusive. In addition, although the role of host functional traits has long been established in disease ecology, its integration into the diversity-disease relationship largely falls behind.
View Article and Find Full Text PDFBehav Processes
January 2025
Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China. Electronic address:
Tourism, as an important manifestation of urbanization, is becoming increasingly popular. Although it offers numerous advantages for the local community, it also exerts a multifaceted impact on local wildlife. Previous research on the effects of tourism has mainly focused on protected areas or tourist spots, rarely considering the surrounding non-tourist attraction areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!