Daclatasvir dihydrochloride (DAC) is an anti-hepatitis C virus (HCV) drug that has recently proven to be a promising candidate for the treatment of SARS-CoV-2. Still, there is a lack of sensitive potentiometric methods for its determination. In this work, carbon paste sensors based on dibenzo-18-crown-6 (DB18C6) were fabricated and optimized for the sensitive and selective potentiometric determination of DAC in Daclavirocyrl® tablets, serum, and urine samples. The best performance was obtained by two sensors referred to as sensor I and sensor II. Both sensors exhibited a wide linear response range of 5×10 - 1×10 mol/L, and Nernstian slopes of 29.8 ± 1.18 and 29.5 ± 1.00 mV/decade, with limits of detection, 4.8×10 and 3.2×10 mol/L, for the sensors I and II, respectively. Sensors I and II displayed fast response times of 5-8 and 5-6 s, respectively, with great reversibility and no memory effect. Moreover, the sensors exhibited a lifetime of 16 days. For the study of sensors morphology and elucidation of the interaction mechanism, the scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (H NMR) techniques were performed. A selectivity study was performed, and the proposed sensors exhibited good discrimination between DAC and potentially coexisting interferents with sensor II displaying better selectivity. Finally, sensor II was successfully applied for the determination of DAC in the above-mentioned samples, with recovery values ranging from 99.25 to 101.42%, and relative standard deviation (RSD) values ranging from 0.79 to 1.53% which reflected the high accuracy and precision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830182PMC
http://dx.doi.org/10.1016/j.microc.2022.107276DOI Listing

Publication Analysis

Top Keywords

sensors exhibited
12
sensors
9
carbon paste
8
paste sensors
8
potentiometric determination
8
daclatasvir dihydrochloride
8
candidate treatment
8
treatment sars-cov-2
8
determination dac
8
values ranging
8

Similar Publications

Measurement and Assessment of Head-to-Helmet Contact Forces.

Ann Biomed Eng

January 2025

Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.

Purpose: To evaluate the population variation in head-to-helmet contact forces in helmet users.

Methods: Four different size Kevlar composite helmets were instrumented with contact pressure sensors and chinstrap tension meters. A total number of 89 volunteers (25 female and 64 male volunteers) participated in the study.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Fabrication of Ag based Surface Enhanced Raman Scattering substrates with periodic mask arrays by electron beam deposition.

Anal Chim Acta

February 2025

Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.

Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.

View Article and Find Full Text PDF

The importance of continuous and reliable pulse wave monitoring is constantly being increased in health signal monitoring and disease diagnoses. Flexible pressure sensors with high sensitivity, low hysteresis and fast response time are an effective means for monitoring pulses. Herein, a special wave-shaped layered porous structure of carbonized wood cellulose sponge (CWCS) was constructed based on natural wood (NW).

View Article and Find Full Text PDF

An electrochemical aptasensor based on bimetallic carbon nanocomposites AuPt@rGO for ultrasensitive detection of adenosine on portable potentiostat.

Bioelectrochemistry

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:

Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!