For radiological diagnosis and radionuclide therapy, X-ray and gamma-ray imaging technologies are essential. Single-photon emission tomography (SPECT) and positron emission tomography (PET) play essential roles in radiological diagnosis, such as the early detection of tumors. Radionuclide therapy is also rapidly developing with the use of these modalities. Nevertheless, a limited number of radioactive tracers are imaged owing to the limitations of the imaging devices. In a previous study, we developed a hybrid Compton camera that conducts simultaneous Compton and pinhole imaging within a single system. In this study, we developed a system that simultaneously realizes three modalities: Compton, pinhole, and PET imaging in 3D space using multiple hybrid Compton cameras. We achieved the simultaneous imaging of Cs-137 (Compton mode targeting 662 keV), Na-22 (PET mode targeting 511 keV), and Am-241 (pinhole mode targeting 60 keV) within the same field of view. In addition, the imaging of Ga-67 and In-111, which are used in various diagnostic scenarios, was conducted. We also verified that the 3D distribution of the At-211 tracer inside a mouse could be imaged using the pinhole mode.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847431PMC
http://dx.doi.org/10.1038/s41598-022-06401-6DOI Listing

Publication Analysis

Top Keywords

hybrid compton
12
mode targeting
12
multiple hybrid
8
compton cameras
8
radiological diagnosis
8
radionuclide therapy
8
emission tomography
8
study developed
8
compton pinhole
8
pinhole mode
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!