Humans make sense of the world by organizing things into categories. When and how does this process begin? We investigated whether real-world object categories that spontaneously emerge in the first months of life match categorical representations of objects in the human visual cortex. Using eye tracking, we measured the differential looking time of 4-, 10-, and 19-mo-olds as they looked at pairs of pictures belonging to eight animate or inanimate categories (human/nonhuman, faces/bodies, real-world size big/small, natural/artificial). Taking infants' looking times as a measure of similarity, for each age group, we defined a representational space where each object was defined in relation to others of the same or of a different category. This space was compared with hypothesis-based and functional MRI-based models of visual object categorization in the adults' visual cortex. Analyses across different age groups showed that, as infants grow older, their looking behavior matches neural representations in ever-larger portions of the adult visual cortex, suggesting progressive recruitment and integration of more and more feature spaces distributed over the visual cortex. Moreover, the results characterize infants' visual categorization as an incremental process with two milestones. Between 4 and 10 mo, visual exploration guided by saliency gives way to an organization according to the animate-inanimate distinction. Between 10 and 19 mo, a category spurt leads toward a mature organization. We propose that these changes underlie the coupling between seeing and thinking in the developing mind.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872728 | PMC |
http://dx.doi.org/10.1073/pnas.2105866119 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!