Global warming is predicted to impact the prevalence and severity of infectious diseases. However, empirical data supporting this statement usually stem from experiments in which parasite fitness and disease outcome are measured directly after temperature increase. This might exclude the possibility of parasite adaptation. To incorporate the adaptive response of parasites into predictions of disease severity in a warmer world, we undertook an experimental evolution assay in which a fungal parasite of phytoplankton was maintained at elevated or control temperatures for six months, corresponding to 100-200 parasite generations. Host cultures were maintained at the respective temperatures and provided as substrate, but were not under parasite pressure. A reciprocal infection experiment conducted after six-month serial passages revealed no evidence of parasite adaptation. In fact, parasite fitness at elevated temperatures was inferior in parasite populations reared at elevated temperatures compared with those maintained under control temperature. However, this effect was reversed after parasites were returned to control temperatures for a few (approx. 10) generations. The absence of parasite adaptation to elevated temperatures suggests that, in phytoplankton-fungus systems, disease outcome under global warming will be largely determined by both host and parasite thermal ecology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847893 | PMC |
http://dx.doi.org/10.1098/rsbl.2021.0560 | DOI Listing |
ACS Infect Dis
January 2025
Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
The complete tricarboxylic acid (TCA) cycle, comprising a series of 8 oxidative reactions, occurs in most eukaryotes in the mitochondria and in many prokaryotes. The net outcome of these 8 chemical reactions is the release of the reduced electron carriers NADH and FADH, water, and carbon dioxide. The parasites of the .
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Sorbonne Université, Institut d'Écologie et des Sciences de l'Environnement de Paris, 4 place Jussieu, 75005 Paris, France - Institut Universitaire de France, Paris, France.
Insects and flowering plants are the most abundant and diverse multicellular organisms on Earth, accounting for 75% of known species. Their evolution has been largely interdependent since the so-called Angiosperm Terrestrial Revolution (100-50 Mya), when the explosion of plant diversity stimulated the evolution of pollinating and herbivorous insects. Plant-insect interactions rely heavily on chemical communication via volatile organic compounds (VOCs).
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P.
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!