Water formation is relevant in many technological processes and is also an important model reaction. Although water formation over Pd surfaces is widely studied, questions regarding the active site and the main reaction path (OH* + OH*) or (OH* + H*) are still open. Combining first-principles density functional theory calculations and kinetic Monte Carlo simulations, we find that the reaction rate is dominated by surface steps and point defects over a wide range of conditions. The main reaction path is found to be temperature dependent where the OH* + OH* path dominates at low temperatures, whereas the OH* + H* path is the main path at high temperatures. Steps facilitate the OH* formation, which is the rate limiting step under all conditions. OH* is formed via O* + H* association or OOH* splitting at low temperatures, whereas OH* is exclusively formed via O* + H* association at high temperatures. The results of the first-principles-based kinetic model are in excellent agreement with experimental observations at high and low temperatures as well as different gas-phase compositions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0078918 | DOI Listing |
Elife
January 2025
Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).
View Article and Find Full Text PDFJ Comp Physiol B
January 2025
Departamento de Fisiologia, Instituto de Biociências da Universidade de São Paulo, São Paulo, Brazil.
During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Brain Sciene, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Background: Genome-wide association studies demonstrated that immune suppressive receptor CD33 variants are associated with high susceptibility to developing Alzheimer's disease (AD). Human CD33 (hCD33) regulates microglial immune response and clearance ability. However, the differential regulation of phagocytosis by human and mouse CD33 imposes constraints on utilizing the mouse model for investigating the role of CD33 in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Alzheimer's disease (AD) and AD-related dementias (ADRD) are modulated by gene-environment (GxE) interactions across the lifespan. Variants of specific genes increase AD risk and synergize with lifetime exposure to environmental toxicants ("exposome"), including neurotoxic metals (lead, Pb; cadmium, Cd) and metalloid (As). These metal/metalloid toxicants readily enter the body (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!