A practical copper-catalyzed nitration of electron-rich arenes with trimethylsilyl chloride and guanidine nitrate is reported. A variety of nitrated products were generated in moderate to excellent yields (32-99%) at ambient temperature under acid-free, open-flask, and operationally simple conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.1c03020 | DOI Listing |
J Hazard Mater
December 2024
Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
Carbonate radical (CO) is inevitably produced in advanced oxidation processes (AOPs) when addressing real-world aqueous environments, yet it often goes unnoticed due to its relatively lower reactivity. In this study, we emphasized the pivotal role of CO in targeting the elimination of contaminants by contrasting it with conventional reactive oxygen species (ROSs) and assessing the removal of sulfamethazine (SMT). Similar to singlet oxygen (O), CO shows a preference for electron-rich organic compounds.
View Article and Find Full Text PDFJ Environ Manage
November 2024
National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China. Electronic address:
Environ Sci Technol
October 2024
School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, China.
The application of 222 nm far-UVC irradiation for degrading organic micropollutants in water shows promise. Nitrate (NO), found in nearly all water bodies, can significantly impact the performance of 222 nm far-UVC-driven systems. This work was the first to investigate the effect of NO on sulfamethoxazole (SMX) photodegradation at 222 nm, finding that NO significantly enhances SMX degradation in different dissociated forms.
View Article and Find Full Text PDFJ Org Chem
May 2024
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
The ,'-bis(thiophen-2-ylmethyl)oxalamide (BTMO) was found to be an effective ligand for Cu-catalyzed -nitration of (hetero)aryl halides (Br, I), making the coupling reaction with sodium nitrite proceed smoothly at 100-120 °C with 1-5 mol % CuI and BTMO. Electron-rich substrates were the best coupling partners to give the desired coupling products in good to excellent yields at 100 °C. Electron-neutral substrates required heating at 120 °C to get complete conversion, while rather low conversions were observed in the case of electron-poor (hetero)aryl bromides.
View Article and Find Full Text PDFHerein, we present the first examples of air-stable, deep-lowest unoccupied molecular orbital (LUMO) polycyclic aromatic molecules with emission in the near-infrared (NIR) region, using nitration as a strategy. Despite the fact that nitroaromatics are non-emissive, the choice of a comparatively electron-rich terrylene core proved to be beneficial for achieving fluorescence in these molecules. The extent of nitration proportionately stabilized the LUMOs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!