Transactive response DNA-binding protein of ∼43 kDa (TDP-43), a primary pathologic substrate in tau-negative frontotemporal lobar degeneration (FTLD), is also often found in the brains of elderly individuals without FTLD and is a key player in the process of neurodegeneration in brains with and without FTLD. It is unknown how rates and trajectories of TDP-43-associated brain atrophy compare between these two groups. Additionally, non-FTLD TDP-43 inclusions are not homogeneous and can be divided into two morphologic types: type-α and neurofibrillary tangle-associated type-β. Therefore, we explored whether neurodegeneration also varies due to the morphologic type. In this longitudinal retrospective study of 293 patients with 843 MRI scans spanning over ∼10 years, we used a Bayesian hierarchical linear model to quantify similarities and differences between the non-FTLD TDP-43 (type-α/type-β) and FTLD-TDP (n = 68) in both regional volume at various timepoints before death and annualized rate of atrophy. Since Alzheimer's disease (AD) is a frequent co-pathology in non-FTLD TDP-43, we further divided types α/β based on presence/absence of intermediate-high likelihood AD: AD-TDP type-β (n = 90), AD-TDP type-α (n = 104), and Pure-TDP (n = 31, all type-α). FTLD-TDP was associated with faster atrophy rates in the inferior temporal lobe and temporal pole compared to all non-FTLD TDP-43 groups. The atrophy rate in the frontal lobe was modulated by age with younger FTLD-TDP having the fastest rates. Older FTLD-TDP showed a limbic predominant pattern of neurodegeneration. AD-TDP type-α showed faster rates of hippocampal atrophy and smaller volumes of amygdala, temporal pole, and inferior temporal lobe compared to AD-TDP type-β. Pure-TDP was associated with slowest rates and less atrophy in all brain regions. The results suggest that there are differences and similarities in longitudinal brain volume loss between FTLD-TDP and non-FTLD TDP-43. Within FTLD-TDP age plays a role in which brain regions are the most affected. Additionally, brain atrophy regional rates also vary by non-FTLD TDP-43 type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850800PMC
http://dx.doi.org/10.1016/j.nicl.2022.102954DOI Listing

Publication Analysis

Top Keywords

non-ftld tdp-43
24
frontotemporal lobar
8
lobar degeneration
8
brain atrophy
8
ad-tdp type-β
8
ad-tdp type-α
8
inferior temporal
8
temporal lobe
8
temporal pole
8
brain regions
8

Similar Publications

TDP-43-associated atrophy in brains with and without frontotemporal lobar degeneration.

Neuroimage Clin

May 2022

Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA. Electronic address:

Transactive response DNA-binding protein of ∼43 kDa (TDP-43), a primary pathologic substrate in tau-negative frontotemporal lobar degeneration (FTLD), is also often found in the brains of elderly individuals without FTLD and is a key player in the process of neurodegeneration in brains with and without FTLD. It is unknown how rates and trajectories of TDP-43-associated brain atrophy compare between these two groups. Additionally, non-FTLD TDP-43 inclusions are not homogeneous and can be divided into two morphologic types: type-α and neurofibrillary tangle-associated type-β.

View Article and Find Full Text PDF

Three subtypes of distinct pathological proteins accumulate throughout multiple brain regions and shape the heterogeneous clinical presentation of frontotemporal lobar degeneration (FTLD). Besides the main pathological subtypes, co-occurring pathologies are common in FTLD brain donors. The objective of this study was to investigate how the location and burden of (co-)pathology correlate to early psychiatric and behavioural symptoms of FTLD.

View Article and Find Full Text PDF

Cognitive impairment and behavioral changes in amyotrophic lateral sclerosis (ALS) are now recognized as part of the disease. Whether it is solely related to the extent of TDP-43 pathology is currently unclear. We aim to evaluate the influence of age, genetics, neuropathological features, and concomitant pathologies on cognitive impairment in ALS patients.

View Article and Find Full Text PDF

Objective: The pathology of frontotemporal dementia, termed frontotemporal lobar degeneration (FTLD), is characterized by distinct molecular classes of aggregated proteins, the most common being TAR DNA-binding protein-43 (TDP-43), tau, and fused in sarcoma (FUS). With a few exceptions, it is currently not possible to predict the underlying pathology based on the clinical syndrome. In this study, we set out to investigate the relationship between pathological and clinical presentation at single symptom level, including neuropsychiatric features.

View Article and Find Full Text PDF

Over the past decade, the transactive response DNA-binding protein of 43 kDa (TDP-43) has been recognized as a major protein in normal and pathological ageing, increasing the risk of cognitive impairment and dementia. In conditions distinct from the frontotemporal lobar degenerations, TDP-43 appears to progress in a stereotypical pattern. In the present study, we aimed at providing a better understanding of the effects of TDP-43 and other age-related neuropathologies on cross-sectional grey matter volume in a cohort of non-FTLD subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!