This study investigated the regulation of the exogenous strigolactone (SL) analog GR24 in enhancing the salt tolerance and the effects of calcium ion (Ca) and hydrogen peroxide (HO) on GR24's regulation effects in cucumber. The seedlings were sprayed with (1) distilled water (CK), (2) NaCl, (3) GR24, then NaCl, (4) GR24, then HO scavenger, then NaCl, and (5) GR24, then Ca blocker, then NaCl. The second true leaf was selected for biochemical assays. Under the salt stress, the exogenous GR24 maintained the ion balance, increased the activity of antioxidant enzymes, reduced the membrane lipid peroxidation, and increased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), accompanied by a decrease in relative conductivity, an increase in the proline content, and elevated gene expression levels of antioxidant enzymes, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, calcium-dependent protein kinases (CDPKs), salt overly sensitive SOS1, CBL-interacting protein kinase 2 (CIPK2), and calcineurin B-like protein 3 (CBL3). Such protective effects triggered by GR24 were attenuated or almost abolished by ethylene glycol tetraacetic acid (EGTA), lanthanum chloride (LaCl3, Ca channel blocker), diphenyleneiodonium (DPI, NADPH oxidase inhibitor), and dimethylthiourea (DMTU, hydroxyl radical scavenger). Our data suggest that exogenous GR24 is highly effective in alleviating salt-induced damages via modulating antioxidant capabilities and improving ionic homeostasis and osmotic balance and that HO and Ca are required for GR24-mediated enhancement of salt tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2022.153640 | DOI Listing |
Anim Cells Syst (Seoul)
January 2025
Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea.
Osmoregulation is essential for the survival of aquatic organisms, particularly teleost fish facing osmotic challenges in environments characterized by variable salinity. While the gills are known for ion exchange, the intestine's role in water and salt absorption is gaining attention. Here, we investigated the adaptive responses of the intestine to salinity stress in guppies (), observing significant morphological and transcriptomic alterations.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China.
Background: Jersey milk, known for its high protein content, is an excellent base for yogurt production. Given that Jersey milk is derived from Jersey cows, this study was to isolate probiotics from Jersey cow feces and investigate their potential as alternative starter cultures for fermenting Jersey milk. Our goal was to develop new starter cultures specifically suited for Jersey yogurt production, while also contributing to the diversity of fermentation agents available for dairy products.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China.
Background: WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation.
View Article and Find Full Text PDFEMBO J
January 2025
University of Pennsylvania, School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, PA, 19104, USA.
Homologous recombination (HR) is important for DNA damage tolerance during replication. The yeast Shu complex, a conserved homologous recombination factor, prevents replication-associated mutagenesis. Here we examine how yeast cells require the Shu complex for coping with MMS-induced lesions during DNA replication.
View Article and Find Full Text PDFSci Rep
January 2025
Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China.
Potatoes are a critical staple crop worldwide, yet their yield is significantly constrained by salt stress. Understanding and enhancing salt tolerance in potatoes is crucial for ensuring food security. This study evaluated the salt tolerance of 17 diverse potato varieties using principal component analysis, membership function analysis, cluster analysis, and stepwise regression analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!