New and more efficient routes of chemical synthesis of vitamin D (D) hydroxy (OH) metabolites, including 20S(OH)D, 20S,23S(OH)D and 20S,25(OH)D, that are endogenously produced in the human body by CYP11A1, and of 20S,23R(OH)D were established. The biological evaluation showed that these compounds exhibited similar properties to each other regarding inhibition of cell proliferation and induction of cell differentiation but with subtle and quantitative differences. They showed both overlapping and differential effects on T-cell immune activity. They also showed similar interactions with nuclear receptors with all secosteroids activating vitamin D, liver X, retinoic acid orphan and aryl hydrocarbon receptors in functional assays and also as indicated by molecular modeling. They functioned as substrates for CYP27B1 with enzymatic activity being the highest towards 20S,25(OH)D and the lowest towards 20S(OH)D. In conclusion, defining new routes for large scale synthesis of endogenously produced D-hydroxy derivatives by pathways initiated by CYP11A1 opens an exciting era to analyze their common and differential activities in vivo, particularly on the immune system and inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923993 | PMC |
http://dx.doi.org/10.1016/j.bioorg.2022.105660 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!