In vitro and in vivo evaluation of a chlorin-based photosensitizer KAE® for cancer treatment.

Photodiagnosis Photodyn Ther

Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China; Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Electronic address:

Published: June 2022

Background: Photodynamic therapy (PDT) has been approved for the clinical treatment of cancers. Photosensitizer (PS) is a crucial element of PDT. In the current study, in vitro and in vivo evaluation of a chlorin-based photosensitizer KAE® was performed.

Methods: The physicochemical characteristics of KAE® were compared with chlorin e6. The intracellular distribution of KAE® in HeLa cells was observed by laser scanning confocal microscopy. Reactive oxygen species (ROS) generation was detected through a 2', 7-dichlorodihydrofluorescein diacetate probe. The pharmacokinetics of KAE® was studied in mice. The photodynamic activities of KAE® and porphyrin based PSs were compared both in vitro and in vivo. The biosafety of KAE® in mice was evaluated by pathological section observation, blood routine examination and biochemistry assays.

Results: KAE® was readily dissolved in an aqueous solvent in a clinically acceptable concentration and showed a strong absorption at around 660 nm. Most of KAE® was located in the mitochondria of the tumor cells. Compared with hematoporphyrin derivative and 5-aminolevulinic acid, KAE® displayed a higher efficiency in cell killing. Furthermore, it could be completely eliminated from mouse body in 2 days. KAE® had no toxicity to mice under the tested dosage.

Conclusions: Our results suggested that KAE® is an effective and safe PS for PDT in cancer therapy and has a promising prospect for clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2022.102759DOI Listing

Publication Analysis

Top Keywords

vitro vivo
12
kae®
12
vivo evaluation
8
evaluation chlorin-based
8
chlorin-based photosensitizer
8
photosensitizer kae®
8
kae® cancer
4
cancer treatment
4
treatment background
4
background photodynamic
4

Similar Publications

Co-blocking TIGIT and PVRIG using a novel bispecific antibody enhances anti-tumor immunity.

Mol Cancer Ther

January 2025

Jiangsu Hengrui Pharmaceutical Co. Ltd, Shanghai, China.

TIGIT and PVRIG are immune checkpoints co-expressed on activated T and NK cells, contributing to tumor immune evasion. Simultaneous blockade of these pathways may enhance therapeutic efficacy, positioning them as promising dual targets for cancer immunotherapy. This study aimed to develop a bispecific antibody (BsAb) to co-target TIGIT and PVRIG.

View Article and Find Full Text PDF

Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.

View Article and Find Full Text PDF

Role of Ciliary Neurotrophic Factor in Angiotensin II-Induced Hypertension.

Hypertension

January 2025

Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (S.A.P., I.Q., D. Arifaj, M.K., D. Argov, L.C.R., J.S.).

Background: Ciliary neurotrophic factor (CNTF), mainly known for its neuroprotective properties, belongs to the IL-6 (interleukin-6) cytokine family. In contrast to IL-6, the effects of CNTF on the vasculature have not been explored. Here, we examined the role of CNTF in AngII (angiotensin II)-induced hypertension.

View Article and Find Full Text PDF

Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency and . For example, AAV9 vectors work well in rodent heart muscle cells but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for studies.

View Article and Find Full Text PDF

Gualou Guizhi Granule inhibits microglia-mediated neuroinflammation to protect against neuronal apoptosis and .

Front Immunol

January 2025

Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.

Object: Neuroinflammation mediated by microglia has emerged as a critical factor in ischemic stroke and neuronal damage. Gualou Guizhi Granule (GLGZG) has been shown to suppress inflammation in lipopolysaccharide (LPS)-activated microglia, though the underlying mechanisms and its protective effects against neuronal apoptosis remain unclear. This study aims to investigate how GLGZG regulates the Notch signaling pathway in microglia to reduce neuroinflammation and protect neurons from apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!