A review of bioaccumulation of volatile methylsiloxanes in aquatic ecosystems.

Sci Total Environ

LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal. Electronic address:

Published: June 2022

Volatile methylsiloxanes (VMSs) are found in a broad range of industrial and consumer products. They are categorized as "high production volume chemicals" by the U.S. Environmental Protection Agency and listed as candidates of substances of very high concern in 2018, by the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). Industrial wastewater and treated effluents may contain VMSs in different amounts, which can be discharged in the receptor media and may lead to environmental contamination. This can result in direct exposure to aquatic receptors in the water column or to benthic invertebrates from contact and/or ingestion of sediments, and indirect exposures through the aquatic food chain. The possible toxicological effects of VMSs for the aquatic biota and human ecology are not very well known since published information regarding this topic is scarce. VMSs have been subjected to regulatory scrutiny for environmental concerns and have already been screened to determine their environmental risk and ecological harm. This paper aims to assess VMSs bioaccumulation and potential biomagnification on food webs, using several bioaccumulation metrics. The result is a high-level overview of all the collected data, comparing the findings and the experimental conditions applied during the assessments. Several studies present conflicting results regarding the bioaccumulation categorization. Some aquatic organisms demonstrated a high bioconcentration and bioaccumulation of these contaminants. Trophic magnification factors (TMFs) have been suggested as the most reliable tool to assess a chemical behaviour in food webs. However, bioaccumulation studies in food webs provided mixed information, with some studies indicating trophic dilution and others presenting a potential of trophic biomagnification of VMSs. Efforts should be directed to obtain field-based levels of VMSs at different trophic levels and a wider range of linear VMSs should be analysed, since most studies focused on D4, D5 and D6.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.153821DOI Listing

Publication Analysis

Top Keywords

food webs
12
volatile methylsiloxanes
8
vmss
8
webs bioaccumulation
8
aquatic
5
bioaccumulation
5
review bioaccumulation
4
bioaccumulation volatile
4
methylsiloxanes aquatic
4
aquatic ecosystems
4

Similar Publications

The gut microbiota is unanimously acknowledged as playing a central role in human health, notably through the production of various metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health itself, these microbial metabolites significantly impact multiple organ systems by participating in key signaling pathways along the well documented gut-organ axes. Chemicals ingested through food might interact with our gut microbiota, altering metabolites production with consequences on health.

View Article and Find Full Text PDF

The study was conducted to detect the occurrence and phenotypic resistance pattern of ESBL-producing Enterobacteriaceae in livestock using docking based analysis to reveal the classes of antibiotics against which ESBL-producers are active. Rectal swabs from healthy cattle (n=100), goats (n=88), pigs (n=66) were collected from backyard farms in Andaman and Nicober island (India). In total, 304 isolates comprising E.

View Article and Find Full Text PDF

Omega-3 fatty acids supplementation from late pregnancy to early lactation attenuates the endocannabinoid system and immune proteome in preovulatory follicles and endometrium of Holstein dairy cows.

J Dairy Sci

January 2025

Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel. Electronic address:

Activation of the endocannabinoid system (ECS) elicits negative effects on the reproductive system in mammals. Omega-3 (n-3) fatty acid (FA) supplementation lowers ECS activation and has anti-inflammatory effects. Thus, we hypothesized that supplementing cows with n-3 FA will downregulate components of the ECS and immune system in preovulatory follicles and in the endometrium.

View Article and Find Full Text PDF

Prior studies assessing the impact of calorie labels in fast-food settings have relied on comparisons across local and state jurisdictions with and without labelling mandates; several well-designed studies indicate a small reduction of calories purchased as a result of the labels. This study exploits a staggered roll-out of calorie labels in California to study the same issue using a novel comparison of in-store purchases with calorie information and drive-through purchases without calorie information at the same locations. With this design, consumers in both the treatment and comparison groups have been subject to the same social signals associated with the policy change and may have been exposed to calorie information during prior purchases, narrowing the intervention under study to the impact of posted menu labels at the point of purchase.

View Article and Find Full Text PDF

In response to the increasing emergence of zoonotic pathogens, flexible, multisectoral surveillance systems capable of generating alerts thanks to rapid, nonspecific detection, are crucial before pathogens reach human populations. Syndromic surveillance has proven to be a breakthrough for near real-time disease surveillance in the public health sector. It relies on existing nonspecific data, usually collected for other purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!