Ovarian Cancer: Applications of Chickens to Humans.

Annu Rev Anim Biosci

Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; email:

Published: February 2022

The lack of preclinical models of spontaneous ovarian cancer (OVCA), a fatal gynecological malignancy, is a significant barrier to generating information on early changes indicative of OVCA. In contrast to rodents, laying hens develop OVCA spontaneously, with remarkable similarities to OVCA in women regarding tumor histology, OVCA dissemination, immune responses, and risk factors. These important features of OVCA will be useful to develop an early detection test for OVCA, which would significantly reduce mortality rates; preventive strategies; immunotherapeutics; prevention of resistance to chemotherapeutics; and exploration of gene therapies. A transvaginal ultrasound (TVUS) imaging method for imaging of hen ovarian tumors has been developed. Hens can be monitored prospectively by using serum markers, together with TVUS imaging, to detect early-stage OVCA, provided that a panel of serum markers can be established and imaging agents developed. Recent sequencing of the chicken genome will further facilitate the hen model to explore gene therapies against OVCA.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-animal-021419-084001DOI Listing

Publication Analysis

Top Keywords

ovca
9
ovarian cancer
8
gene therapies
8
tvus imaging
8
serum markers
8
cancer applications
4
applications chickens
4
chickens humans
4
humans lack
4
lack preclinical
4

Similar Publications

Background: Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ.

View Article and Find Full Text PDF

Background: There has been limited success of cancer immunotherapies in the treatment of ovarian cancer (OvCa) to date, largely due to the immunosuppressive tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are a major component of both the primary tumour and malignant ascites, promoting tumour growth, angiogenesis, metastasis, chemotherapy resistance and immunosuppression. Differential microRNA (miRNA) profiles have been implicated in the plasticity of TAMs.

View Article and Find Full Text PDF

A Neutrophil Extracellular Traps-Related Signature Predicts Clinical Outcomes and Identifies Immune Landscape in Ovarian Cancer.

J Cell Mol Med

December 2024

Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China.

Ovarian cancer (OvCa) is the most lethal gynaecology malignancies worldwide. Neutrophil extracellular traps (NETs), net-like protein structures produced by activated neutrophils and DNA-histone complexes, have a central role in tumours, though haven't been fully explored in OvCa. We obtained transcriptome data from TCGA-OvCa database (n = 376) as training, ICGC-OvCa database (n = 111) as validation and GTEx database (n = 180) as controls.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS), a major cause of female infertility, affects 4%-20% of reproductive-age women. Metabolic and hormonal alterations are key features of PCOS, potentially raising the risk of endometrial (EC) and ovarian (OVCA) cancers. This systematic review aims to summarise the proposed molecular mechanisms involved in the association between PCOS and EC or OVCA.

View Article and Find Full Text PDF

Background: Peritoneal dissemination of ovarian cancer (OvCa) can be largely attributed to the formation of a metastatic microenvironment driven by tumoral exosomes. Here, we aimed to elucidate the mechanisms through which exosomal annexin A2 (ANXA2) derived from OvCa cells induces an HPMC phenotypic shift in favour of peritoneal metastasis.

Methods: Immunohistochemistry and orthotopic and intraperitoneal OvCa xenograft mouse models were used to clarify the relationship between tumour ANXA2 expression and peritoneal metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!