Animals harbor diverse communities of microbes within their gastrointestinal tracts. Phylogenetic relationship, diet, gut morphology, host physiology, and ecology all influence microbiome composition within and between animal clades. Emerging evidence points to host genetics as also playing a role in determining gut microbial composition within species. Here, we discuss recent advances in the study of microbiome heritability across a variety of animal species Candidate gene and discovery-based studies in humans, mice, , , cattle, swine, poultry, and baboons reveal trends in the types of microbes that are heritable and the host genes and pathways involved in shaping the microbiome. Heritable gut microbes within a host species tend to be phylogenetically restricted. Host genetic variation in immune- and growth-related genes drives the abundances of these heritable bacteria within the gut. With only a small slice of the metazoan branch of the tree of life explored to date, this is an area rife with opportunities to shed light into the mechanisms governing host-microbe relationships.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000414 | PMC |
http://dx.doi.org/10.1146/annurev-animal-020420-032054 | DOI Listing |
Emerg Microbes Infect
January 2025
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France.
Insertion sequences (IS) represent mobile genetic elements that have been shown to be associated with bacterial evolution and adaptation due to their effects on genome plasticity. In , the causative agent of whooping cough, the numerous IS elements induce genomic rearrangements and contribute to the diversity of the global population. Previously, we have shown that the majority of IS-specific endogenous promoters induce the synthesis of alternative transcripts and thereby affect the transcriptional landscape of .
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
Departments of Medicine and Pediatrics, Division of Infectious Diseases and Global Health, University of California San Francisco School of Medicine, 550 16th Street, 4th Floor Mission Hall, San Francisco, CA, 94158, USA.
Whole genome sequencing (WGS) is pivotal for the molecular characterization of ()-the leading bacterial cause of sexually transmitted infections and infectious blindness worldwide. WGS can inform epidemiologic, public health and outbreak investigations of these human-restricted pathogens. However, challenges persist in generating high-quality genomes for downstream analyses given its obligate intracellular nature and difficulty with propagation.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
The objective of the present study was to investigate the role and mechanism of bone marrow microenvironmental cells in regulating the mitochondrial mass of leukemia cells, and to uncover the mechanism of leukemia progression at the metabolic level. A mouse model of acute myeloid leukemia (AML) induced by the overexpression of the MLL-AF9 (MA9) fusion protein was established, and the bone marrow cells of AML mice were transplanted into mitochondrial fluorescence reporter mice expressing the Dendra2 protein (mito-Dendra2 mice). The proportion of Dendra2 cells in bone marrow leukemia cells at different stages of AML was quantified by flow cytometry.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.
Bacterial resistance has emerged as one of the greatest threats to human health, and phages have shown tremendous potential in addressing the issue of drug-resistant bacteria by lysing host. The identification of phage-host interactions (PHI) is crucial for addressing bacterial infections. Some existing computational methods for predicting PHI are suboptimal in terms of prediction efficiency due to the limited types of available information.
View Article and Find Full Text PDFCell Commun Signal
January 2025
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!