Palladium-Catalyzed Cascade 5--dig Cyclization of Ynamides to Form 4-Alkynyloxazolones.

J Org Chem

Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil.

Published: March 2022

The selective synthesis of 4-alkynyloxazolones and their further applications as substrates to electrophile-promoted nucleophilic cyclization have been developed. The reaction of ynamides with terminal alkynes proceeded smoothly to give 4-alkynyloxazolones in the presence of a catalytic amount of palladium(II) acetate. The products were obtained with the sequential formation of new C-C and C-O bonds via a cascade procedure. The first step involved a carbon-oxygen bond formation, via a 5--dig closure, which was confirmed by X-ray analyses of the crystalline sample. Subsequently, the reaction of 4-alkynyloxazolones with an electrophilic selenium source gave 3-phenylselanyl benzofuran derivatives via an electrophile-promoted nucleophilic cyclization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.1c02978DOI Listing

Publication Analysis

Top Keywords

electrophile-promoted nucleophilic
8
nucleophilic cyclization
8
palladium-catalyzed cascade
4
cascade 5--dig
4
5--dig cyclization
4
cyclization ynamides
4
ynamides form
4
4-alkynyloxazolones
4
form 4-alkynyloxazolones
4
4-alkynyloxazolones selective
4

Similar Publications

Intermediate Control: Unlocking Hitherto Unknown Reactivity and Selectivity in N-Conjugated Allenes and Alkynes.

Acc Chem Res

January 2025

Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.

View Article and Find Full Text PDF

Electrophile-Promoted Nucleophilic Cyclization of 2-Alkynylindoles to Give 4-Substituted Oxazinoindolones.

Chemistry

February 2023

Laboratório de Síntese, Reatividade, Avaliação Farmacológica, Toxicológica de Organocalcogênios, CCNE, UFSM, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.

A method for the synthesis of 4-organoselanyl oxazinoindolone derivatives by the cascade cyclization of N-(alkoxycarbonyl)-2-alkynylindoles using iron(III) chloride and diorganyl diselenides as promoters was developed. This protocol was applied to a series of N-(alkoxycarbonyl)-2-alkynylindoles containing different substituents. The reaction conditions also tolerated a variety of diorganyl diselenides having both electron donating and electron withdrawing groups.

View Article and Find Full Text PDF

Palladium-Catalyzed Cascade 5--dig Cyclization of Ynamides to Form 4-Alkynyloxazolones.

J Org Chem

March 2022

Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil.

The selective synthesis of 4-alkynyloxazolones and their further applications as substrates to electrophile-promoted nucleophilic cyclization have been developed. The reaction of ynamides with terminal alkynes proceeded smoothly to give 4-alkynyloxazolones in the presence of a catalytic amount of palladium(II) acetate. The products were obtained with the sequential formation of new C-C and C-O bonds via a cascade procedure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!