Catalytic oxidation of HS is a crucial green pathway that can fully convert HS into value-added elemental S for commercial use. However, achieving high catalytic stability and S selectivity by traditional-metal-based catalysts still remain a major challenge. Herein, a facile one-step solvothermal strategy is designed for the fabrication of bimetallic MIL-53(Al-Fe) catalysts. The as-synthesized MIL-53(1Al-5Fe) possesses ample coordinatively unsaturated metal sites, which served as efficient catalytic sites for the selective oxidation of HS. As a result, the representative MIL-53(1Al-5Fe) achieves a S yield of nearly 100% at 100-160 °C with almost no obvious decrease of catalytic stability in the run of 30 h. Under the defined reaction conditions, the bimetallic metal-organic frameworks are obviously superior to MIL-53(Al) (49.3%) and MIL-53(Fe) (70.5%) in S yield. This study suggests that the introduction of elemental Al into MIL-53(Al-Fe) could effectively modulate the electronic properties and spatial configuration of the catalysts, further conducing the adsorption and activation of HS and thus accelerating the dissociation of HS into a key intermediate S* and improving their catalytic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c00048 | DOI Listing |
J Colloid Interface Sci
January 2025
College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006 China. Electronic address:
Lithium (Li) metal anodes hold great promise for next-generation secondary batteries with high energy density. Unfortunately, several problems such as Li dendrite growth, low Coulombic efficiency and poor cycle life hinder the commercialization of Li metal anodes. Herein, we design a highly lithiophilic carbon cloth host modified with Sn-doped zinc oxide (ZnO) (ZnSn-CC) directly derived from a bimetallic ZnSn metal-organic framework (ZnSn-MOF), which boosts uniform Li plating/stripping during charge-discharge and effectively protects the Li metal anode.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with their monometallic counterparts due to the strong synergistic effect between bimetals.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Environment and Energy, South China University of Technology, Guangzhou 510006 China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510640 China. Electronic address:
Bimetallic catalysts have notable advantages in the field of persulfate activation owing to their intermetallic synergy. However, studies on stimulating the potential concentration effect through intermetallic coordination to enhance the electron transfer efficiency are limited. In this study, a cobalt (Co) and zinc (Zn) bimetallic yolk-shell structured high-efficiency peroxymonosulfate (PMS) catalyst (Z67@8-HCNF) was prepared by the derivatization of metal-organic backbone materials and was found to produce significant synergistic interactions between Co and Zn metals, which could be utilized to trigger the potential concentration effect to enhance the intermolecular electron transfer efficiency and achieve efficient PMS activation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!