As 2D metamaterials, metasurfaces provide an unprecedented means to manipulate light with the ability to multiplex different functionalities in a single planar device. Currently, most pursuits of multifunctional metasurfaces resort to empirically accommodating more functionalities at the cost of increasing structural complexity, with little effort to investigate the intrinsic restrictions of given meta-atoms and thus the ultimate limits in the design. In this work, it is proposed to embed machine-learning models in both gradient-based and nongradient optimization loops for the automatic implementation of multifunctional metasurfaces. Fundamentally different from the traditional two-step approach that separates phase retrieval and meta-atom structural design, the proposed end-to-end framework facilitates full exploitation of the prescribed design space and pushes the multifunctional design capacity to its physical limit. With a single-layer structure that can be readily fabricated, metasurface focusing lenses and holograms are experimentally demonstrated in the near-infrared region. They show up to eight controllable responses subjected to different combinations of working frequencies and linear polarization states, which are unachievable by the conventional physics-guided approaches. These results manifest the superior capability of the data-driven scheme for photonic design, and will accelerate the development of complex devices and systems for optical display, communication, and computing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202110022DOI Listing

Publication Analysis

Top Keywords

multifunctional metasurfaces
8
design
6
pushing limits
4
limits functionality-multiplexing
4
functionality-multiplexing capability
4
capability metasurface
4
metasurface design
4
design based
4
based statistical
4
statistical machine
4

Similar Publications

Design of a graphene-based chiral trifunctional tunable terahertz metasurface.

Phys Chem Chem Phys

January 2025

College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.

Driven by the pressing demand for integration and miniaturization within the terahertz (THz) spectrum, this research introduces an innovative approach to construct chiral structures using dichroism as the target function. This initiative aims to tackle the prevalent issues of single-functionality, narrow application scope, and intricate design in conventional metasurfaces. The proposed multifunctional tunable metasurface employs a graphene-metal hybrid structure to address the critical constraints found in existing designs.

View Article and Find Full Text PDF

Existing tunable optical metasurfaces based on the electro-optic effect are either complex in structure or have a limited phase modulation range. In this paper, a simple rectangular metasurface structure based on a Pb(MgNb)O-PbTiO (PMN-PT) crystal with high electro-optic coefficient of 120 pm/V was designed to demonstrate its electrically tunable performance in the optical communication band through simulations. By optimizing the structure parameters, a tunable metasurface was generated that can induce a complete 2π phase shift for beam deflection while maintaining relatively uniform transmittance.

View Article and Find Full Text PDF

Electromagnetic Wavefront Engineering by Switchable and Multifunctional Kirigami Metasurfaces.

Nanomaterials (Basel)

January 2025

Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China.

Developing switchable and multifunctional metasurfaces is essential for high-integration photonics. However, most previous studies encountered challenges such as limited degrees of freedom, simple tuning of predefined functionality, and complicated control systems. Here, we develop a general strategy to construct switchable and multifunctional metasurfaces.

View Article and Find Full Text PDF

A Review of Cascaded Metasurfaces for Advanced Integrated Devices.

Micromachines (Basel)

December 2024

State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.

This paper reviews the field of cascaded metasurfaces, which are advanced optical devices formed by stacking or serially arranging multiple metasurface layers. These structures leverage near-field and far-field electromagnetic (EM) coupling mechanisms to enhance functionalities beyond single-layer metasurfaces. This review comprehensively discusses the physical principles, design methodologies, and applications of cascaded metasurfaces, focusing on both static and dynamic configurations.

View Article and Find Full Text PDF

The complete manipulation of Jones matrix phase-channels using metasurfaces brings forth unparalleled possibilities across diverse wavefront modulation applications. Traditionally, achieving independent control over all four phase-channels usually involves the introduction of chirality with multilayer or three-dimensional metasurfaces. Here, we present a general chirality-free method that relies on polarization base transformation with a planar minimalist metasurface, effectively decoupling the four Jones matrix phase-channels, thereby unleashing the fundamental boundaries imposed by conventional linear or circular polarization bases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!