Objectives: To evaluate the influence of the composite resin translucency used in direct anatomic fiber posts on the bond strength (BS) and microhardness (VHN) of a luting agent into flared roots.

Materials And Methods: The root canals of 70 single-rooted premolars were endodontically treated and prepared to simulate an oversized root canal. Prior to post cementation, composite resins with varying translucency (high translucent, HT; medium translucent, MT; high opacity, HO) were placed around the fiber posts to create anatomic fiber posts. The attenuation profile (%) of light passing either through the post or through the anatomic posts (n = 8) was obtained prior to the cementing procedures. A positive control group (PC) in which a prefabricated fiber post (PFP) with the diameter compatible with the root canal was cemented and a poorly adapted fiber post (negative control group, NC) were also evaluated. For both tests, the data were subjected to 2-way ANOVA and Bonferroni tests (α = 0.05).

Results: A more severe light attenuation through the post at the cervical (P < .001) and medium (P < 0.001) thirds was noted when less translucent composite resin surrounded the anatomic post. HO groups showed lower BS (P = .009) and VHN (P < .001) values than the other groups, regardless of root third. No significant difference in BS values was noted between PC and HT groups.

Conclusion: The use of a more translucent composite resin in anatomic fiber posts increased the microhardness and bond strength of a dual polymerization self-adhesive RLA compared to the use of MT and HO composite. A well-adapted PFP showed the highest adhesive and mechanical behavior.

Clinical Relevance: Clinicians should choose more translucent composite resins to create direct anatomic fiber posts to be cemented in flared root canals. That choice may allow improved mechanical properties of self-adhesive RLA and higher bond strength to the root canal as a consequence.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00784-022-04408-xDOI Listing

Publication Analysis

Top Keywords

fiber posts
16
anatomic fiber
12
translucency direct
8
direct anatomic
8
posts bond
8
bond strength
8
strength microhardness
8
luting agent
8
agent flared
8
root canal
8

Similar Publications

Robot-assisted Endodontic Retreatment: A Case Report with Clinical Considerations.

J Endod

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China. Electronic address:

Introduction: Fiber posts present significant challenges for nonsurgical endodontic retreatment, as improper removal may result in iatrogenic root perforation or even root fracture. Recently, robotic technology has attracted considerable attention in dentistry and active dental robotic (ADR) systems can perform procedures based on preset instructions, minimizing reliance on the dentist's experience. This case report describes the application of an ADR system for fiber post removal through an existing zirconia crown.

View Article and Find Full Text PDF

Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.

View Article and Find Full Text PDF

Nanophotonic inspection of deep-subwavelength integrated optoelectronic chips.

Sci Adv

January 2025

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.

Artificial nanostructures with ultrafine and deep-subwavelength features have emerged as a paradigm-shifting platform to advanced light-field management, becoming key building blocks for high-performance integrated optoelectronics and flat optics. However, direct optical inspection of integrated chips remains a missing metrology gap that hinders quick feedback between design and fabrications. Here, we demonstrate that photothermal nonlinear scattering microscopy can be used for direct imaging and resolving of integrated optoelectronic chips beyond the diffraction limit.

View Article and Find Full Text PDF

This study evaluated the effect of resin cements and post-space irrigation solutions on the push-out bond strength of diabetic and non-diabetic dentin. A total of 160 human central teeth (80 diabetic, 80 non-diabetic) were prepared using X5 files and obturated with AH Plus sealer and X5 gutta-percha. Post spaces were prepared, and teeth were divided into eight groups based on resin cements (Variolink N, Panavia SA Universal) and irrigation protocols (saline, saline + 2% CHX).

View Article and Find Full Text PDF

Purpose: To compare the effect of post-and-core material type and production technique on the fracture resistance of teeth.

Materials And Methods: Sixty human maxillary central incisors were used for the study. Root canal treatments were performed, and the post cavities were created.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!