Organ- and tissue-level biological functions are intimately linked to microscale cell-cell interactions and to the overarching tissue architecture. Together, biofabrication and organoid technologies offer the unique potential to engineer multi-scale living constructs, with cellular microenvironments formed by stem cell self-assembled structures embedded in customizable bioprinted geometries. This study introduces the volumetric bioprinting of complex organoid-laden constructs, which capture key functions of the human liver. Volumetric bioprinting via optical tomography shapes organoid-laden gelatin hydrogels into complex centimeter-scale 3D structures in under 20 s. Optically tuned bioresins enable refractive index matching of specific intracellular structures, countering the disruptive impact of cell-mediated light scattering on printing resolution. This layerless, nozzle-free technique poses no harmful mechanical stresses on organoids, resulting in superior viability and morphology preservation post-printing. Bioprinted organoids undergo hepatocytic differentiation showing albumin synthesis, liver-specific enzyme activity, and remarkably acquired native-like polarization. Organoids embedded within low stiffness gelatins (<2 kPa) are bioprinted into mathematically defined lattices with varying degrees of pore network tortuosity, and cultured under perfusion. These structures act as metabolic biofactories in which liver-specific ammonia detoxification can be enhanced by the architectural profile of the constructs. This technology opens up new possibilities for regenerative medicine and personalized drug testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202110054 | DOI Listing |
Bioact Mater
March 2025
Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea.
Tissue-engineered anisotropic cell constructs are promising candidates for treating volumetric muscle loss (VML). However, achieving successful cell alignment within macroscale 3D cell constructs for skeletal muscle tissue regeneration remains challenging, owing to difficulties in controlling cell arrangement within a low-viscosity hydrogel. Herein, we propose the concept of a magnetorheological bioink to manipulate the cellular arrangement within a low-viscosity hydrogel.
View Article and Find Full Text PDFBiofabrication
December 2024
Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
Managing type 1 diabetes mellitus (T1DM) presents significant challenges because of the complexity of replicating the microenvironment of pancreatic islets and ensuring the long-term viability and function of transplanted insulin-producing cells (IPCs). This study developed a functional approach that utilizes 3D bioprinting technology to create pore-enriched and pre-vascularized tissue constructs incorporating a pancreatic tissue-derived decellularized extracellular matrix and human-induced pluripotent stem cells (hiPSCs) aimed at enhancing blood glucose regulation in T1DM. We designed a volumetric 3D pancreatic tissue construct that supported the engraftment, survival, and insulin-producing functionality of hiPSC-derived IPCs.
View Article and Find Full Text PDFJ Funct Biomater
November 2024
Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea.
Since the discovery that exosomes can exchange genes, their potential use as tools for tissue regeneration, disease diagnosis, and therapeutic applications has drawn significant attention. Emerging three-dimensional (3D) printing technologies, such as bioprinting, which allows the printing of cells, proteins, DNA, and other biological materials, have demonstrated the potential to create complex body tissues or personalized 3D models. The use of 3D spheroids in bioprinting facilitates volumetric tissue reconstruction and accelerates tissue regeneration via exosome secretion.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Biomedical Engineering, Penn State University, University Park, PA, USA.
Biomed Mater
November 2024
Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, People's Republic of China.
The study aimed to investigate the impact of low-intensity pulsed ultrasound (LIPUS) on human urinary-derived stem cells (hUSCs) viability within three-dimensional (3D) cell-laden gelatin methacryloyl (GelMA) scaffolds. hUSCs were integrated into GelMA bio-inks at concentrations ranging from 2.5% to 10% w/v and then bioprinted using a volumetic-based method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!