Understanding the motion of artificial active swimmers in complex surroundings, such as a dense bath of passive particulate matter, is essential for their successful utilization as cargo (drug) carriers and sensors or for medical imaging, under microscopic domains. In this study, we experimentally investigated the motion of active SiO-Pt Janus particles (JPs) in a two-dimensional bath of smaller silica tracers dispersed with varying areal densities. Our observations indicate that when an active JP undergoes a collision with an isolated tracer, their interaction can have a significant impact on the swimmer's motion. However, the overall impact of tracers on the active JPs' motion (translation and rotation) depends on the frequency of collisions and also on the nature of the collision, which is marked by the time-duration for which the particles maintain contact during the collisions. Further, in the high-density tracer bath, our experiments reveal that the motion of the active JP results in a novel organizational behavior of the tracers on the trailing Pt (depletion of tracers) and the leading SiO (accumulation of tracers) side. In laboratory frame the emergence and the subsequent vanishing of the depletion zone are discussed in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c03424 | DOI Listing |
Sci Rep
January 2025
Department of Electrical and Electronics, Faculty of Engineering, Alberoni University, Kapisa, Afghanistan.
This study first proposes an innovative method for optimizing the maximum power extraction from photovoltaic (PV) systems during dynamic and static environmental conditions (DSEC) by applying the horse herd optimization algorithm (HHOA). The HHOA is a bio-inspired technique that mimics the motion cycles of an entire herd of horses. Next, the linear active disturbance rejection control (LADRC) was applied to monitor the HHOA's reference voltage output.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
Barbell squats are commonly used in strength training, but the anterior-posterior displacement of the Center of Mass (COM) may impair joint stability and increase injury risk. This study investigates the key factors influencing COM displacement during different squat modes.; Methods: This study recruited 15 male strength training enthusiasts, who performed 60% of their one-repetition maximum (1RM) in the Front Barbell Squat (FBS), High Bar Back Squat (HBBS), and Low Bar Back Squat (LBBS).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
Infrared array sensor-based fall detection and activity recognition systems have gained momentum as promising solutions for enhancing healthcare monitoring and safety in various environments. Unlike camera-based systems, which can be privacy-intrusive, IR array sensors offer a non-invasive, reliable approach for fall detection and activity recognition while preserving privacy. This work proposes a novel method to distinguish between normal motion and fall incidents by analyzing thermal patterns captured by infrared array sensors.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Information Engineering, Kiel University, 24143 Kiel, Germany.
Clinical motion analysis plays an important role in the diagnosis and treatment of mobility-limiting diseases. Within this assessment, relative (point-to-point) tracking of extremities could benefit from increased accuracy. Given the limitations of current wearable sensor technology, supplementary spatial data such as distance estimates could provide added value.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!