A PHP Error was encountered

Severity: 8192

Message: Implicit conversion from float 0.5 to int loses precision

Filename: helpers/my_audit_helper.php

Line Number: 211

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 211
Function: sleep

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 998
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3330
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 38
Function: pubMedSearch_Global

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: 8192

Message: Implicit conversion from float 0.5 to int loses precision

Filename: helpers/my_audit_helper.php

Line Number: 211

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 211
Function: sleep

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3102
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: 8192

Message: Implicit conversion from float 0.5 to int loses precision

Filename: helpers/my_audit_helper.php

Line Number: 211

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 211
Function: sleep

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 998
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3138
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fibronectin type III domain-containing 5 improves aging-related cardiac dysfunction in mice. | LitMetric

Aging is an important risk factor for cardiovascular diseases, and aging-related cardiac dysfunction serves as a major determinant of morbidity and mortality in elderly populations. Our previous study has identified fibronectin type III domain-containing 5 (FNDC5) and its cleaved form, irisin, as the cardioprotectant against doxorubicin-induced cardiomyopathy. Herein, aging or matched young mice were overexpressed with FNDC5 by adeno-associated virus serotype 9 (AAV9) vectors, or subcutaneously infused with irisin to uncover the role of FNDC5 in aging-related cardiac dysfunction. To verify the involvement of nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) and AMP-activated protein kinase α (AMPKα), Nlrp3 or Ampkα2 global knockout mice were used. Besides, young mice were injected with AAV9-FNDC5 and maintained for 12 months to determine the preventive effect of FNDC5. Moreover, neonatal rat cardiomyocytes were stimulated with tumor necrosis factor-α (TNF-α) to examine the role of FNDC5 in vitro. We found that FNDC5 was downregulated in aging hearts. Cardiac-specific overexpression of FNDC5 or irisin infusion significantly suppressed NLRP3 inflammasome and cardiac inflammation, thereby attenuating aging-related cardiac remodeling and dysfunction. In addition, irisin treatment also inhibited cellular senescence in TNF-α-stimulated cardiomyocytes in vitro. Mechanistically, FNDC5 activated AMPKα through blocking the lysosomal degradation of glucagon-like peptide-1 receptor. More importantly, FNDC5 gene transfer in early life could delay the onset of cardiac dysfunction during aging process. We prove that FNDC5 improves aging-related cardiac dysfunction by activating AMPKα, and it might be a promising therapeutic target to support cardiovascular health in elderly populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920441PMC
http://dx.doi.org/10.1111/acel.13556DOI Listing

Publication Analysis

Top Keywords

aging-related cardiac
20
cardiac dysfunction
20
fndc5
9
fibronectin type
8
type iii
8
iii domain-containing
8
improves aging-related
8
elderly populations
8
young mice
8
role fndc5
8

Similar Publications

Aging is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and numerous other diseases, but the mechanisms of these aging-related effects remain elusive. Chronic changes in the microenvironment and paracrine signaling behaviors have been implicated, but remain understudied. Here, for the first time, we directly compare extracellular vesicles obtained from young and aged patients to identify therapeutic or disease-associated agents, and directly compare vesicles isolated from heart tissue matrix (TEVs) or plasma (PEVs).

View Article and Find Full Text PDF

Purpose: It is crucial to identify biomarkers that influence the aging process and associated health risks, given the growing severity of the global population aging issue. The objectives of our research were to evaluate cardiac metabolic index (CMI) as a novel biomarker for identifying individuals at increased risk of accelerated biological aging and to assess its use in guiding preventive strategies for aging-related health risks.

Methods: The National Health and Nutrition Examination Survey (NHANES) provided cross-sectional data on participants with complete information on CMI, phenotypic age (PA), and other variables.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are known for their benefits in conditions like cardiovascular diseases in type 2 diabetes and obesity. They also show promise for aging-related conditions with minimal side effects. However, their impact on cardiovascular risk is still debated.

View Article and Find Full Text PDF

Background: Oxidative stress damages biological molecules and plays a role in aging-related cardiovascular diseases. is a major source of antioxidants that may work against age-related cardiovascular changes.

Aims: This study aimed to assess the changes in electrocardiography and lipid profile as well as indicators of the oxidant-antioxidant system with advanced age in rats.

View Article and Find Full Text PDF

Background: Human cardiac organoids closely replicate the architecture and function of the human heart, offering a potential accurate platform for studying cellular and molecular features of aging cardiomyopathy. Senolytics have shown potential in addressing age-related pathologies but their potential to reverse aging-related human cardiomyopathy remains largely unexplored.

Methods: We employed human iPSC-derived cardiac organoids (hCOs/hCardioids) to model doxorubicin(DOXO)-induced cardiomyopathy in an aged context.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!