A framework for the responsible reform of the 14-day rule in human embryo research.

Protein Cell

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.

Published: August 2022

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232680PMC
http://dx.doi.org/10.1007/s13238-022-00907-5DOI Listing

Publication Analysis

Top Keywords

framework responsible
4
responsible reform
4
reform 14-day
4
14-day rule
4
rule human
4
human embryo
4
framework
1
reform
1
14-day
1
rule
1

Similar Publications

Internal auditing demands innovative and secure solutions in today's business environment, with increasing competitive pressure and frequent occurrences of risky and illegal behaviours. Blockchain along with secure databases like encryption improves internal audit security through immutability and transparency. Hence integrating blockchain with homomorphic encryption and multi-factor authentication improves privacy and mitigates computational overhead.

View Article and Find Full Text PDF

Critical care physicians are rich sources of innovation, developing new diagnostic, prognostic, and treatment tools they deploy in clinical practice, including novel software-based tools. Many of these tools are validated and promise to actively help patients, but physicians may be unlikely to distribute, implement, or share them with other centers noncommercially because of unsettled ethical, regulatory, or medicolegal concerns. This Viewpoint explores the potential barriers and risks critical care physicians face in disseminating device-related innovations for noncommercial purposes and proposes a framework for risk-based evaluation to foster clear pathways to safeguard equitable patient access and responsible implementation of clinician-generated technological innovations in critical care.

View Article and Find Full Text PDF

Emerging carbapenem-resistant in a tertiary care hospital in Lima, Peru.

Microbiol Spectr

January 2025

Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.

The emergence of carbapenem-resistant (CRKP) poses a significant public health threat, particularly in low- and middle-income countries (LMICs) with limited surveillance and treatment options. This study examines the genetic diversity, resistance patterns, and transmission dynamics of 66 CRKP isolates recovered over 5 years (2015-2019) after the first case of CRKP was identified at a tertiary care hospital in Lima, Peru. Our findings reveal a shift from to as the dominant carbapenemase gene after 2017.

View Article and Find Full Text PDF

() is a major pathogenic bacterium responsible for bacterial foodborne diseases, making its rapid, specific, and accurate detection crucial. In this study, we develop a ratiometric biosensor based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats/CRISPR associated protein 12a (RPA-CRISPR/Cas12a) system and Eu-metal-organic framework (Eu-MOF) fluorescent nanomaterials for the high-sensitivity detection of , combining with RPA for efficient isothermal amplification, this sensor enhances specificity and sensitivity by utilizing the target activation of CRISPR/Cas12a. The Eu-MOF serves a dual function, providing stable red fluorescence as a reference signal and adsorbing FAM-labeled probes for fluorescence quenching, forming a dual-signal system that significantly reduces background interference.

View Article and Find Full Text PDF

Background: Brucellosis, one of the most common zoonotic diseases globally, is a serious public health problem. The complex and diverse clinical manifestations pose numerous challenges for patients when coping with brucellosis. Scarce studies have been performed in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!