Smart IoT and Machine Learning-based Framework for Water Quality Assessment and Device Component Monitoring.

Environ Sci Pollut Res Int

Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.

Published: June 2022

Water is the most important natural element present on earth for humans, yet the availability of pure water is becoming scarce and decreasing. An increase in population and rise in temperatures are two major factors contributing to the water crisis worldwide. Desalinated, brackish water from the sea, lake, estuary, or underground aquifers is treated to maximize freshwater availability for human consumption. However, mismanagement of water storage, distribution, or quality leads to serious threats to human health and ecosystems. Sensors, embedded and smart devices in water plants require proactive monitoring for optimal performance. Traditional quality and device management require huge investments in time, manual efforts, labour, and resources. This research presents an IoT-based real-time framework to perform water quality management, monitor, and alert for taking actions based on contamination and toxic parameter levels, device and application performance as the first part of the proposed work. Machine learning models analyze water quality trends and device monitoring and management architecture. The results display that the proposed method manages water monitoring and accessing water parameters efficiently than other works.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-19014-3DOI Listing

Publication Analysis

Top Keywords

water quality
12
water
11
quality
5
smart iot
4
iot machine
4
machine learning-based
4
learning-based framework
4
framework water
4
quality assessment
4
device
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!