CRISPR/Cas9 genome editing underwent remarkable progress and significantly contributed to the development of life sciences. Induced pluripotent stem cells (iPSCs) have also made a relevant contribution to regenerative medicine, pharmacological research, and genetic disease analysis. However, knockout iPSC generation with CRISPR/Cas9 in general has been difficult to achieve using approaches such as frameshift mutations to reproduce genetic diseases with full-length or nearly full-length gene deletions. Moreover, splicing and illegitimate translation could make complete knockouts difficult. Full-length gene deletion methods in iPSCs might solve these problems, although no such approach has been reported yet. In this study, we present a practical two-step gene-editing strategy leading to the precise, biallelic, and complete deletion of the full-length NPHP1 gene in iPSCs, which is the first report of biallelic (compound heterozygous) full-gene deletion in iPSCs using CRISPR/Cas9 and single-stranded oligodeoxynucleotides mainly via single-strand template repair (SSTR). Our strategy requires no selection or substances to enhance SSTR and can be used for the analysis of genetic disorders that are difficult to reproduce by conventional knockout methods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-022-00655-0DOI Listing

Publication Analysis

Top Keywords

pluripotent stem
8
stem cells
8
gene deletion
8
full-length gene
8
generation nphp1
4
nphp1 knockout
4
knockout human
4
human pluripotent
4
cells practical
4
practical biallelic
4

Similar Publications

Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.

View Article and Find Full Text PDF

The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial-mesenchymal interaction (EMI).

View Article and Find Full Text PDF

Brain organoid models have greatly facilitated our understanding of human brain development and disease. However, key brain cell types, such as microglia, are lacking in most brain organoid models. Because microglia have been shown to play important roles in brain development and pathologies, attempts have been made to add microglia to brain organoids through co-culture.

View Article and Find Full Text PDF

The nuclear matrix, a proteinaceous gel composed of proteins and RNA, is an important nuclear structure that supports chromatin architecture, but its role in human pluripotent stem cells (hPSCs) has not been described. Here we show that by disrupting heterogeneous nuclear ribonucleoprotein U (HNRNPU) or the nuclear matrix protein, Matrin-3, primed hPSCs adopted features of the naive pluripotent state, including morphology and upregulation of naive-specific marker genes. We demonstrate that HNRNPU depletion leads to increased chromatin accessibility, reduced DNA contacts and increased nuclear size.

View Article and Find Full Text PDF

A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!