Background: Adult immunocompetent male C57Bl/6 mucopolysaccharidosis, type I (MPSI) mice develop aortic insufficiency (AI), dilated ascending aortas and decreased cardiac function, findings not observed in immune incompetent adult male NSG MPSI mice. We sought to determine why.
Methods: Cardiac ultrasound measurements of ascending aorta and left ventricular dimensions and Doppler interrogation for AI were performed in 6-month-old male B6 MPSI (N = 12), WT (N = 6), NSG MPSI (N = 8), NSG (N = 6) mice. Urinary glycosaminoglycans, RNA sequencing with quantitative PCR were performed and aortic pathology assessed by routine and immunohistochemical staining on subsets of murine aortas.
Results: Ascending aortic diameters were significantly greater, left ventricular function significantly decreased, and AI significantly more frequent in B6 MPSI mice compared to NSG MPSI mice (p < 0.0001, p = 0.008 and p = 0.02, respectively); NSG and B6 WT mice showed no changes. Urinary glycosaminoglycans were significantly greater in B6 and NSG MPSI mice and both were significantly elevated compared to WT controls (p = 0.003 and p < 0.0001, respectively). By RNA sequencing, all 11 components of the inflammasome pathway were upregulated in B6 MUT, but only Aim2 and Ctsb in NSG MUT mice and none in WT controls. Both B6 and NSG MUT mice demonstrated variably-severe intramural inflammation, vacuolated cells, elastin fragmentation and disarray, and intense glycosaminoglycans on histological staining. B6 MPSI mice demonstrated numerous medial MAC2+ macrophages and adventitial CD3+ T-cells while MAC2+ macrophages were sparse and CD3+ T-cells absent in NSG MPSI mice.
Conclusions: Aortic dilation, AI and decreased cardiac function occur in immunocompetent B6 MPSI male mice but not in immune incompetent NSG MPSI mice, unrelated to GAG excretion, upregulation of Ctsb, or routine histologic appearance. Upregulation of all components of the inflammasome pathway in B6 MUT, but not NSG MUT mice, and abundant medial MAC2 and adventitial CD3 infiltrates in B6, but not NSG, MPSI aortas differentiated the two strains. These results suggest that the innate and adaptive immune systems play a role in these cardiac findings which may be relevant to human MPSI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9109621 | PMC |
http://dx.doi.org/10.1016/j.ymgme.2022.01.104 | DOI Listing |
Heliyon
October 2024
Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China.
Mol Ther
November 2024
CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy. Electronic address:
Mucopolysaccharidoses (MPSs) are childhood diseases caused by inherited deficiencies in glycosaminoglycan degradation. Most MPSs involve neurodegeneration, which to date is untreatable. Currently, most therapeutic strategies aim at correcting the primary genetic defect.
View Article and Find Full Text PDFTheranostics
July 2024
Department of Orthopedics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China, 325041.
Int Immunopharmacol
April 2024
School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China. Electronic address:
Background: We recently found that butyrate could ameliorate inflammation of alcoholic liver disease (ALD) in mice. However, the exact mechanism remains incompletely comprehended. Here, we examined the role of butyrate on ALD-associated inflammation through macrophage (Mψ) regulation and polarization using in vivo and in vitro experiments.
View Article and Find Full Text PDFMol Genet Metab
August 2023
Stem Cell and Neurotherapies Group, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom. Electronic address:
Mucopolysaccharidosis Type I (MPSI) is a rare inherited lysosomal storage disease that arises due to mutations in the IDUA gene. Defective alpha-L-iduronidase (IDUA) enzyme is unable to break down glucosaminoglycans (GAGs) within the lysosomes and, as a result, there is systemic accumulation of undegraded products in lysosomes throughout the body leading to multi-system disease. Here, we characterised the skeletal/craniofacial, neuromuscular and behavioural outcomes of the MPSI Idua-W392X mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!