Agro-industrial wastes have gained great attention as a possible source of bioactive compounds, which may be utilized in various industries including pharmaceutics, cosmetics, and food. The food processing industry creates a vast amount of waste which contains valuable compounds such as phenolics. Polyphenols can be found in soluble (extractable or free), conjugated, and insoluble-bound forms in various plant-based foods including fruits, vegetables, grains, nuts, and legumes. A substantial portion of phenolic compounds in agro-industrial wastes is present in the insoluble-bound form attached to the cell wall structural components and conjugated form which is covalently bound to sugar moieties. These bound phenolic compounds can be released from wastes by hydrolysis of the cell wall and glycosides by microbial enzymes. In addition, they can be converted into unique metabolites by methylation, carboxylation, sulfate conjugation, hydroxylation, and oxidation ability of microorganisms during fermentation. Enhancement of concentration and antioxidant activity of phenolic compounds and production of new metabolites from food wastes by microbial fermentation might be a promising way for better utilization of natural resources. This review provides an overview of mechanisms and factors affecting release and bioconversion of phenolic compounds in agro-industrial wastes by microbial fermentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.1c06888 | DOI Listing |
BMC Plant Biol
January 2025
Agrobiosciences Laboratory, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
Drought is a significant environmental stressor that induces changes in the physiological, morphological, biochemical, and molecular traits of plants, ultimately resulting in reduced plant growth and crop productivity. Seaweed extracts are thought to be effective in mitigating the effects of drought stress on plants. In this study, we investigated the impact of crude extract (CE), and polysaccharides (PS) derived from the brown macroalgae Fucus spiralis (Heterokontophyta, Phaeophyceae) applied at 5% (v/v) and 0.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Nanobiophotonics Department, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany. Electronic address:
In recent years, nanozyme-based analytics have become popular. Among these, laccase nanozyme-based colorimetric sensors have emerged as simple and rapid colorimetric detection methods for various analytes, effectively addressing natural enzymes' stability and high-cost limitations. Laccase nanozymes are nanomaterials that exhibit inherent laccase enzyme-like activity.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, China. Electronic address:
Background: The metal organic cages (MOCs) are an emerging type of porous material that has attracted considerable research interest due to their unique properties, including good stability and well-defined intrinsic cavities. The chiral MOCs with porous structures have broad application prospects in enantiomeric recognition and separation. However, there are almost no relevant reports on chiral MOCs as chiral stationary phases (CSPs) for enantioseparation by high-performance liquid chromatography (HPLC).
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
Indian Scientific Education and Technology Foundation, Lucknow, 226002, India. Electronic address:
Alzheimer's disease is a complicated, multifaceted, neurodegenerative illness that places an increasing strain on healthcare systems. Due to increasing malfunction and death of nerve cells, the person suffering from Alzheimer's disease (AD) slowly and steadily loses their memories, cognitive functions and even their personality. Although medications may temporarily enhance memory, there are currently no permanent therapies that can halt or cure this irreversible neurodegenerative process.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil. Electronic address:
Anacardic acid (AA) is a phenolic lipid extracted from cashew nutshell liquid that has antitumor activity. Given the high hydrophobicity of this compound and aiming to create efficient vehicle for its administration in aqueous systems, the objective of the present work was to develop a microcapsule (MCAA) by spray dryer technique, based on the polysaccharide sodium hyaluronate (SH), containing AA as its core, encapsulated from nanoemulsion. The Encapsulation Efficiency of MCAA presented a value equal to 95.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!