Measurement of the nitric oxide (NO) concentration in living cells in the physiological nanomolar range is crucial in understanding NO biochemical functions, as well as in characterizing the efficiency and kinetics of NO delivery by NO-releasing drugs. Here, we show that fluorescence correlation spectroscopy (FCS) is perfectly suited for these purposes, due to its sensitivity, selectivity, and spatial resolution. Using the fluorescent indicators, diaminofluoresceins (DAFs), and FCS, we measured the NO concentrations in NO-producing living human primary endothelial cells, as well as NO delivery kinetics, by an external NO donor to the immortal human epithelial living cells. Due to the high spatial resolution of FCS, the NO concentration in different parts of the cells were also measured. The detection of nitric oxide by means of diaminofluoresceins is much more efficient and faster in living cells than in PBS solutions, even though the conversion to the fluorescent form is a multi-step reaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838662 | PMC |
http://dx.doi.org/10.3390/molecules27031010 | DOI Listing |
Int J Surg
January 2025
The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
Colorectal cancer (CRC) is a malignant tumor that originates from the epithelial cells of the colon and rectum. Global epidemiological data shows that in 2020, the incidence and mortality rate of CRC ranked third and second, respectively, posing a serious threat to people's health and lives. The factors influencing CRC are numerous and can be broadly categorized as modifiable and non-modifiable based on whether they can be managed or intervened upon.
View Article and Find Full Text PDFEndocrine
January 2025
Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones.
View Article and Find Full Text PDFJ Med Virol
February 2025
Infectious Diseases Department, University Hospital Montpellier & INSERM U1175, University Montpellier, Montpellier, France.
Despite viral suppression with antiretroviral therapy, immune nonresponders (INR) among people living with HIV (PLWH) still have a higher risk of developing AIDS-related and non-AIDS-related complications. Our study aimed to investigate the phenotype and functions of Natural Killer (NK) cells in INR, to better understand underlying mechanisms of immune nonresponse. Our cross-sectional study included PLWH aged over 45 with an undetectable HIV viral load sustained for at least 2 years.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Sorbonne Université, CNRS, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 9 Quai St-Bernard, 75005 Paris, France.
The advent of high-throughput omics data and the generation of new algorithms provide the biologists with the opportunity to explore living processes in the context of systems biology aiming at revealing the gene interactions, the networks underlying complex cellular functions. In this article, we discuss two methods for gene network reconstruction, WGCNA (Weighted Gene Correlation Network Analysis) developed by Steve Horvath and collaborators in 2008, and MIIC (Multivariate Information-based Inductive Causation) developed by Hervé Isambert and his team in 2017 and 2024. These two methods are complementary, WGCNA generating undirected networks in which most gene-to-gene interactions are indirect, while MIIC reveals direct interactions and some causal links.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.
Sulfur-containing small molecules, mainly including cysteine (Cys), homocysteine (Hcy), glutathione (GSH), and hydrogen sulfide (HS), are crucial biomarkers, and their levels in different body locations (living cells, tissues, blood, urine, saliva, ) are inconsistent and constantly changing. Therefore, it is highly meaningful and challenging to synchronously and accurately detect them in complex multi-component samples without mutual interference. In this work, we propose a steric hindrance-regulated probe, NBD-2FDCI, with single excitation dual emissions to achieve self-adaptive detection of four analytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!