Petroleum, synthetic, and natural waxes have been used as hydrophobic bases for dispersions intended for use as barrier coatings for packaging paper. Oil-in-water dispersions with alkaline pH were prepared by a two-step homogenization procedure containing paraffin wax, with various characteristics, the Fischer-Tropsch synthesis product or beeswax. The size of the dispersed particles determined by dynamic light scattering depended on the type of hydrophobic base used and was in the range of 350-440 nm. The ability of dispersion particles in aggregation driven by electrostatic attraction, evaluated by Zeta potential analysis by electrophoretic light scattering, was from -26 to -50 mV. Static multiply light scattering was used for 30 days of stability assessment and helped to select the dispersion with a Sarawax SX70 wax base as the most stable. Dispersions were further used for coating the backing of kraft paper by the Meyer rod method. Coated paper with an applied coating of 6 g/m had very good hydrophobic properties (Cobb60 < 4 g/m), sufficient strength properties, and air permeation, which enabled its application as a packaging material. The dispersions based on Sarawax SX70 wax were evaluated as the best coating for Mondi ProVantage Kraftliner 125 g/m backing paper. Good hydrophobic properties and strength properties indicate the possibility of using the SX70-based wax dispersion coating as a replacement for PFAS coatings in some applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839680 | PMC |
http://dx.doi.org/10.3390/molecules27030930 | DOI Listing |
Sci Rep
January 2025
Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia.
Skin cancer is one of the most common types of cancer worldwide, with exposure to UVB radiation being a significant risk factor for its development. To prevent skin cancer, continuous research efforts have focused on finding suitable photoprotective ingredients from natural sources that are also environmentally friendly. This study aimed to develop oil-in-water photoprotective nanoemulsions containing marine macroalgae extract.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405 Orsay, France.
This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.
View Article and Find Full Text PDFFor Res (Fayettev)
December 2024
State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
Polyphenols, as one of the primary compounds produced by plant secondary metabolism, have garnered considerable attention because of their non-toxic, environmentally friendly, and biodegradable properties, as well as their notable medicinal value. This study presents a metabolomic analysis of polyphenols from 11 woody plants, including , , and , investigating a total of 40 polyphenolic metabolites. A differential metabolite dynamics map highlighted the five most differentiated substances among the 11 plants, including vitexin, dihydromyricetin, genistin, resveratrol, and isorhamnetin.
View Article and Find Full Text PDFRSC Adv
January 2025
Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!