Glasses and devitrificates from the SiO-BO-PO-KO-CaO-MgO system with constant contents of SiO and PO network formers, modified by the addition of BO, were analyzed. All materials were synthesized by the traditional melt-quenching technique. The glass stability (GS) parameters (K, ∆T, K, K) were determined. The effect of the addition of BO on the GS, liquation phenomenon, crystallization process, and the type of crystallizing phases were examined using SEM-EDS, DSC, XRD, and Raman spectroscopy imaging methods. It was observed that the addition of BO increased the tendency of the glass to crystallize. Both phosphates (e.g., CaMgK(PO), MgCa(PO)), and silicates (e.g., KMg(SiO), CaMg(SiO), MgSiO) crystallized in the studied system. The Raman spectrum for the orthophosphate MgCa(PO) stanfieldite type was obtained. Boron ions were introduced into the structures of crystalline compounds at high crystallization temperatures. The type of crystallizing phases was found to be related to the phenomenon of liquation, and the order of their occurrence was dependent on the Gibbs free enthalpy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839742PMC
http://dx.doi.org/10.3390/molecules27030867DOI Listing

Publication Analysis

Top Keywords

crystallization process
8
type crystallizing
8
crystallizing phases
8
investigating crystallization
4
process boron-bearing
4
boron-bearing silicate-phosphate
4
silicate-phosphate glasses
4
glasses thermal
4
thermal spectroscopic
4
spectroscopic methods
4

Similar Publications

Phase change materials such as Ge2Sb2Te5 (GST) are ideal candidates for next-generation, non-volatile, solid-state memory due to the ability to retain binary data in the amorphous and crystal phases and rapidly transition between these phases to write/erase information. Thus, there is wide interest in using molecular modeling to study GST. Recently, a Gaussian Approximation Potential (GAP) was trained for GST to reproduce Density Functional Theory (DFT) energies and forces at a fraction of the computational cost [Zhou et al.

View Article and Find Full Text PDF

Tailoring selenization dynamics: How heating rate manipulates nucleation and growth boosts efficiency in kesterite solar cells.

J Chem Phys

January 2025

Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory of Thin Film Devices and Technology, Nankai University, Tianjin 300350, China.

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has emerged as a promising photovoltaic material due to its low cost and high stability. The CZTSSe film for high-performance solar cells can be obtained by annealing the deposited CZTS precursor films with selenium (a process known as selenization). The design of the selenization process significantly affects the quality of the absorber layer.

View Article and Find Full Text PDF

Serendipitous high-resolution structure of Escherichia coli carbonic anhydrase 2.

Acta Crystallogr F Struct Biol Commun

February 2025

Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

X-ray crystallography remains the dominant method of determining the three-dimensional structure of proteins. Nevertheless, this resource-intensive process may be hindered by the unintended crystallization of contaminant proteins from the expression source. Here, the serendipitous discovery of two novel crystal forms and one new, high-resolution structure of carbonic anhydrase 2 (CA2) from Escherichia coli that arose during a crystallization campaign for an unrelated target is reported.

View Article and Find Full Text PDF

Tungsten bronze oxides have emerged as attractive materials for energy storage owing to their fast charge-discharge property. However, the internal weakness of low capacity and short cycling performance impedes their development in wide application. In this work, the tungsten bronze WNbO nanorods with preferred orientation (001) were prepared by hydrothermal method for the first time.

View Article and Find Full Text PDF

CuI cubane-type secondary building units are reticulated with a piperazine linker at room temperature to crystallize the metal-organic frameworks (MOFs) CuI(Pip) in a non-centrosymmetric 622 space group. For the first time, cubane cluster type MOF's strong piezoelectric nature has been studied by switching spectroscopy piezo force microscopy (SS-PFM) and piezo force microscopy (PFM) mapping of the crystal, with piezoelectric constant () ∼52.33 pm V, highlighting its potential for mechanical energy harvesting processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!