Since hepatocellular carcinoma (HCC) is a typical hypervascular malignant tumor with poor prognosis, targeting angiogenesis is an important therapeutic strategy for advanced HCC. Involvement of bone morphologic protein 9 (BMP9), a transforming growth factor-beta superfamily member, has recently been reported in the development of liver diseases and angiogenesis. Here, we aimed to elucidate the role of BMP9 signaling in promoting HCC angiogenesis and to assess the antiangiogenic effect of BMP receptor inhibitors in HCC. By analyzing HCC tissue gene expression profiles, we found that BMP9 expression was significantly correlated with angiogenesis-associated genes, including HIF-1α and VEGFR2. In vitro, BMP9 induced HCC cell HIF-1α/VEGFA expression and VEGFA secretion. Silencing of the inhibitor of DNA-binding protein 1 (ID1), a transcription factor targeted by BMP9 signaling, suppressed BMP9-induced HIF-1α/VEGFA expression and VEGFA secretion, resulting in decreased human umbilical vein endothelial cell (HUVEC) lumen formation. BMP receptor inhibitors, which inhibit BMP9-ID1 signaling, suppressed BMP9-induced HIF-1α/VEGFA expression, VEGFA secretion, and HUVEC lumen formation. In vivo, the BMP receptor inhibitor LDN-212854 successfully inhibited HCC tumor growth and angiogenesis by inhibiting BMP9-ID1 signaling. In summary, BMP9-ID1 signaling promotes HCC angiogenesis by activating HIF-1α/VEGFA expression. Thus, targeting BMP9-ID1 signaling could be a pivotal therapeutic option for advanced HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835914PMC
http://dx.doi.org/10.3390/ijms23031475DOI Listing

Publication Analysis

Top Keywords

bmp9-id1 signaling
20
hif-1α/vegfa expression
16
bmp receptor
12
expression vegfa
12
vegfa secretion
12
hcc
9
hepatocellular carcinoma
8
advanced hcc
8
bmp9 signaling
8
hcc angiogenesis
8

Similar Publications

Article Synopsis
  • Hepatic alveolar echinococcosis is a zoonotic disease prevalent in western China, especially in regions like Qinghai, Tibet, and Xinjiang.
  • Research shows that neovascularization in this disease is linked to the overexpression of VEGFA and HIF-1α, which play key roles in angiogenesis.
  • The article explores the potential for treating hepatic alveolar echinococcosis by targeting signaling pathways similar to those used in liver cancer therapies, focusing on the biological roles of HIF-1α, VEGFA, and the BMP9-ID1 signaling pathway.
View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a highly lethal malignant neoplasm, and the involvement of bone morphogenetic protein 9 (BMP9) has been implicated in the pathogenesis of liver diseases and HCC. Our goal was to investigate the role of BMP9 signaling in regulating N6-methyladenosine (mA) methylation and cell cycle progression, and evaluate the therapeutic potential of BMP receptor inhibitors for HCC treatment. We observed that elevated levels of BMP9 expression in tumor tissues or serum samples from HCC patients were associated with a poorer prognosis.

View Article and Find Full Text PDF

Since hepatocellular carcinoma (HCC) is a typical hypervascular malignant tumor with poor prognosis, targeting angiogenesis is an important therapeutic strategy for advanced HCC. Involvement of bone morphologic protein 9 (BMP9), a transforming growth factor-beta superfamily member, has recently been reported in the development of liver diseases and angiogenesis. Here, we aimed to elucidate the role of BMP9 signaling in promoting HCC angiogenesis and to assess the antiangiogenic effect of BMP receptor inhibitors in HCC.

View Article and Find Full Text PDF

The malignant nature of hepatocellular carcinoma (HCC) is closely related to the presence of cancer stem cells (CSCs). Bone morphologic protein 9 (BMP9), a member of the transforming growth factor-beta (TGF-β) superfamily, was recently reported to be involved in liver diseases including cancer. We aimed to elucidate the role of BMP9 signaling in HCC-CSC properties and to assess the therapeutic effect of BMP receptor inhibitors in HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!