Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Currently available small diameter vascular grafts (<6 mm) present several long-term limitations, which has prevented their full clinical implementation. Computational modeling and simulation emerge as tools to study and optimize the rational design of small diameter tissue engineered vascular grafts (TEVG). This study aims to model the correlation between mechanical-hemodynamic-biochemical variables on protein adsorption over TEVG and their regenerative potential. To understand mechanical-hemodynamic variables, two-way Fluid-Structure Interaction (FSI) computational models of novel TEVGs were developed in ANSYS Fluent 2019R3 and ANSYS Transient Structural software. Experimental pulsatile pressure was included as an UDF into the models. TEVG mechanical properties were obtained from tensile strength tests, under the ISO7198:2016, for novel TEVGs. Subsequently, a kinetic model, linked to previously obtained velocity profiles, of the protein-surface interaction between albumin and fibrinogen, and the intima layer of the TEVGs, was implemented in COMSOL Multiphysics 5.3. TEVG wall properties appear critical to understand flow and protein adsorption under hemodynamic stimuli. In addition, the kinetic model under flow conditions revealed that size and concentration are the main parameters to trigger protein adsorption on TEVGs. The computational models provide a robust platform to study multiparametrically the performance of TEVGs in terms of protein adsorption and their regenerative potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835378 | PMC |
http://dx.doi.org/10.3390/ijms23031130 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!