The effect of exogenously-applied ethylene sourced from ethephon (2-chloroethyl phosphonic acid)was studied on photosynthesis, carbohydrate metabolism, and high-temperature stress tolerance in Taipei-309 and Rasi cultivars of rice ( L.). Heat stress increased the content of HO and thiobarbituric acid reactive substances (TBARS)more in Rasi than Taipei-309. Further, a significant decline in sucrose, starch, and carbohydrate metabolism enzyme activity and photosynthesis was also observed in response to heat stress. The application of ethephon reduced HO and TBARS content by enhancing the enzymatic antioxidant defense system and improved carbohydrate metabolism, photosynthesis, and growth more conspicuously in Taipei-309 under heat stress. The ethephon application enhanced photosynthesis by up-regulating the and genes of photosystem II in heat-stressed plants. Interestingly, foliar application of ethephoneffectively down-regulated high-temperature-stress-induced elevated ethylene biosynthesis gene expression. Overall, ethephon application optimized ethylene levels under high-temperature stress to regulate the antioxidant enzymatic system and carbohydrate metabolism, reducing the adverse effects on photosynthesis. These findings suggest that ethylene regulates photosynthesis via carbohydrate metabolism and the antioxidant system, thereby influencing high-temperature stress tolerance in rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835467PMC
http://dx.doi.org/10.3390/ijms23031031DOI Listing

Publication Analysis

Top Keywords

carbohydrate metabolism
24
photosynthesis carbohydrate
12
high-temperature stress
12
heat stress
12
metabolism antioxidant
8
antioxidant defense
8
tolerance rice
8
stress tolerance
8
ethephon application
8
photosynthesis
7

Similar Publications

ASIC1a mediated nucleus pulposus cells pyroptosis and glycolytic crosstalk as a molecular basis for intervertebral disc degeneration.

Inflamm Res

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.

Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.

View Article and Find Full Text PDF

The mutant waxy allele (wx1) is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications. The amino acid profile of waxy maize resembles normal maize, making it particularly deficient in lysine and tryptophan. Therefore, the present study explored the combined effects of genes governing carbohydrate and protein composition on nutritional profile and kernel physical properties by crossing Quality Protein Maize (QPM) (o2o2/wx1wx1) and waxy (o2o2/wx1wx1) parents.

View Article and Find Full Text PDF

Unbiased picture of the ligand docking process for the hevein protein-oligosaccharide complex.

Sci Rep

January 2025

Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Nishi, Gakuen-Kibanadai, Miyazaki, 889-2192, Japan.

The ligand-docking behavior of hevein, the major latex protein from the rubber tree Hevea brasiliensis (Euphorbiaceae), has been investigated by the unguided molecular dynamics (MD) simulation method. An oligosaccharide molecule, initially placed in an arbitrary position, was allowed to move around hevein for a prolonged simulation time, on the order of microseconds, with the expectation of spontaneous ligand docking of the oligosaccharide molecule to the binding site of hevein. In the binary solution system consisting of a hevein molecule and a chito-trisaccharide (GlcNAc) molecule, three out of the six separate simulation runs successfully reproduced the complex structure of the observed binding from.

View Article and Find Full Text PDF

Visualizing mechanical stress distribution in soft and live biomaterials is essential for understanding biological processes and improving material design. However, it remains challenging due to their complexity, dynamic nature, and sensitivity requirements, necessitating innovative techniques. Since polysaccharides are common in various biomaterials, a biosensor integrating a Förster resonance energy transfer (FRET)-based tension sensor module and carbohydrate-binding modules (FTSM-CBM) has been designed for real-time monitoring of the stress distribution of these biomaterials.

View Article and Find Full Text PDF

Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!