Physicochemical Characteristics and Occupational Exposure of Silica Particles as Byproducts in a Semiconductor Sub Fab.

Int J Environ Res Public Health

Department of Occupational and Environmental Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea.

Published: February 2022

This study aimed to elucidate the physicochemical characteristics and occupational exposure of silica powder and airborne particles as byproducts generated from the first scrubbers of chemical vapor deposition and diffusion processes during maintenance in a semiconductor facility sub fab to reduce unknown risk factors. The chemical composition, size, morphology, and crystal structure of powder and airborne particles as byproducts were investigated using a scanning electron microscopy and transmission electron microscopy equipped with an energy dispersive X-ray spectroscopy, and an X-ray diffraction. The number and mass concentration measurements of airborne particles were performed by using an optical particle sizer of a direct-reading aerosol monitor. All powder and airborne particle samples were mainly composed of oxygen (O) and silicon (Si), which means silica. The byproduct particles were spherical and/or nearly spherical and the particle size ranged from 10 to 90 nm, based on primary particles. Most of the particles were usually agglomerated within a particle size range from approximately 100 nm to 35 µm. In addition, most of the powder samples exhibited diffraction patterns with a broad and relatively low intensity at 2θ degrees 21.6-26.7°, which is similar to that of pure amorphous silica. The above results show the byproduct particles are amorphous silica, which are considered a less toxic foam compared to crystalline silica. The number and mass concentrations of PM10 (particles less than 10 µm in diameter) ranged from 4.250-78.466 particles/cm and 0.939-735.531 µg/m, respectively. In addition, 0.3-1.0 and 2.5-10 µm particles occupied the highest portion of the number and mass concentrations, respectively. Meanwhile, several peak exposure patterns were observed at a specific step, which is the process of removing powder particles on the inner chamber and cleaning the chamber by using a vacuum cleaner and a clean wiper, during the maintenance task.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835547PMC
http://dx.doi.org/10.3390/ijerph19031791DOI Listing

Publication Analysis

Top Keywords

particles byproducts
12
powder airborne
12
airborne particles
12
number mass
12
particles
11
physicochemical characteristics
8
characteristics occupational
8
occupational exposure
8
exposure silica
8
electron microscopy
8

Similar Publications

This study details the synthesis of a novel ternary nanocomposite composed of MnFeO, FeVO, and modified zeolite, achieved through a two-step process. The initial step involved the hydrothermal synthesis of the MnFeO/FeVO composite, followed by its application onto modified zeolite using ultrasonic waves. The synthesized nanocomposite was thoroughly characterized using a range of analytical techniques.

View Article and Find Full Text PDF

Porous carbons with complex 3D geometries via selective laser sintering of whey powder.

Sci Rep

January 2025

Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, c/Francisco Pintado Fe 26, Oviedo, 33011, Spain.

In addition to the inherent limitations of carbons to melt or flow, a vast majority of carbon precursors deforms during carbonisation, with stereolithography of thermoset resins being the preferred technology for 3D printing of carbons. An alternative is now presented with the possibility of using a melting-based technology, selective laser sintering (SLS), to fabricate 3D structures that withstand carbonisation. The key factor that makes this happen is whey powder, a natural, abundant and cheap by-product of the dairy industry.

View Article and Find Full Text PDF

Glycerol carbonate (GC) can be produced from glycerol (GL), a low-value byproduct in the biodiesel industry. In this work, continuous processes of GC production via transesterification from crude GL and diethyl carbonate (DEC) were developed using Aspen Plus. Two cases were considered, and their process performances were compared.

View Article and Find Full Text PDF

A fundamental study has been conducted on the effective utilization of rice husk ash (RHA) in concrete. RHA is an agricultural byproduct characterized by silicon dioxide as its main component, with a content of 90% or more and a porous structure that absorbs water during mixing, thereby reducing fluidity. The quality of RHA varies depending on the calcination environment; however, the effect is not consistent.

View Article and Find Full Text PDF

Rosehip is of notable scientific interest due to its rich content of bioactives and its wide-ranging applications in nutrition, cosmetics and pharmaceuticals. The valorization of rosehip by-products, such as pomace, is highly significant for promoting sustainability. This study investigates the development of rosehip-based powders and beverage prototypes derived from both juice and pomace to evaluate the potential use of pomace in instant beverage design and compare it with juice-based formulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!