Transport of Veterinary Antibiotics in Farmland Soil: Effects of Dissolved Organic Matter.

Int J Environ Res Public Health

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.

Published: February 2022

The application of manure as a fertiliser to farmland is regarded as a major source of veterinary antibiotic (VA) contamination in the environment. The frequent detection of such emerging contaminants and their potential adverse impacts on the ecosystem and human health have provoked increasing concern for VA transport and fate. Extrinsic dissolved organic matter (DOM) may be introduced into farmland soil along with Vas, and thus exert significant effects on the transport of VAs via hydrological processes upon rainfall. The leaching of VAs can be either enhanced or reduced by DOM, depending on the nature, mobility, and interactions of VAs with DOM of different origins. From the aspect of the diversity and reactivity of DOM, the state-of-the-art knowledge of DOM-VA interactions and their resulting effects on the sorption-desorption and leaching of VAs in farmland soil was reviewed. Spectroscopic techniques for examining the extent of binding and reactive components of DOM with VAs are summarized and their usefulness is highlighted. Models for simulating VA transport under the effects of DOM were also reviewed. It is suggested that distinct impacts of DOM of various organic fertiliser/amendment origins should be considered for predicting the transport of VAs in farmland soil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834935PMC
http://dx.doi.org/10.3390/ijerph19031702DOI Listing

Publication Analysis

Top Keywords

farmland soil
16
dissolved organic
8
organic matter
8
transport vas
8
leaching vas
8
vas farmland
8
dom
7
vas
7
transport
5
farmland
5

Similar Publications

Identification, distribution, and hosts of spp. infecting horticultural crops in Florida, USA with focus on .

J Nematol

March 2024

Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598, USA.

Many root-knot nematode (RKN) species in the genus occur in Florida, including , a species able to overcome RKN resistance genes in many crops. The distribution of these nematodes in horticultural crops is not well known. A RKN survey was conducted in South and Central Florida aiming to: (i) identify RKN infecting vegetables, fruit, and other crops; (ii) document host plants; (iii) determine RKN distribution; and (iv) gain insight on the relatedness of obtained in this study with other populations from the USA and other countries.

View Article and Find Full Text PDF

Sustainable soil management is essential to conserve soil biodiversity and its provision of vital ecosystem services. The EU Biodiversity Strategy for 2030 highlights the key role of organic farming and land protection in halting biodiversity loss, including edaphic biodiversity. To assess the effectiveness of the proposed measures, a 1-year study was conducted in spring 2022 to determine the soil quality of three organically managed agroecosystems and four sites for each: arable lands, olive groves, and vineyards in the Conero Park, using the arthropod-based Biological Soil Quality Index (QBS-ar) and also considering soil chemical-physical characteristics.

View Article and Find Full Text PDF

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

Spatial and Temporal Variability Management for All Farmers: A Cell-Size Approach to Enhance Coffee Yields and Optimize Inputs.

Plants (Basel)

January 2025

Laboratory of Precision Agriculture (LAP), Department of Biosystems Engineering, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil.

Coffee yield exhibits plant-level variability; however, due to operational issues, especially in smaller operations, the scouting and management of coffee yields are often hindered. Thus, a cell-size approach at the field level is proposed as a simple and efficient solution to overcome these constraints. This study aimed to present the feasibility of a cell-size approach to characterize spatio-temporal coffee production based on soil and plant attributes and yield (biennial effects) and to assess strategies for enhanced soil fertilization recommendations and economic results.

View Article and Find Full Text PDF

Integrated enzyme activities and untargeted metabolome to reveal the mechanism that allow long-term biochar-based fertilizer substitution improves soil quality and maize yield.

Environ Res

January 2025

Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China. Electronic address:

Biochar-based fertilizer has potential benefits in improving soil quality and crop yield, but the biological mechanisms of soil microbial enzymes interacting with related metabolisms still need to be further investigated. In this study, we combined enzymology and untargeted metabolomics to investigate how biochar-based fertilizer substitution affects soil quality and crop yield by regulating soil enzymes and metabolites in dry-crop farmland. Our findings showed that biochar-based fertilizer substitution enhanced the activities of enzymes related to carbon, nitrogen, and phosphorus cycling, as well as influenced metabolite composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!