Exploring the Effects of Roadside Vegetation on the Urban Thermal Environment Using Street View Images.

Int J Environ Res Public Health

College of Geography and Environment, Shandong Normal University, Jinan 250300, China.

Published: January 2022

Roadsides are important urban public spaces where residents are in direct contact with the thermal environment. Understanding the effects of different vegetation types on the roadside thermal environment has been an important aspect of recent urban research. Although previous studies have shown that the thermal environment is related to the type and configuration of vegetation, remote sensing-based technology is not applicable for extracting different vegetation types at the roadside scale. The rapid development and usage of street view data provide a way to solve this problem, as street view data have a unique pedestrian perspective. In this study, we explored the effects of different roadside vegetation types on land surface temperatures (LSTs) using street view images. First, the grasses-shrubs-trees (GST) ratios were extracted from 19,596 street view images using semantic segmentation technology, while LST and normalized difference vegetation index (NDVI) values were extracted from Landsat-8 images using the radiation transfer equation algorithm. Second, the effects of different vegetation types on roadside LSTs were explored based on geographically weighted regression (GWR), and the different performances of the analyses using remotely sensed images and street view images were discussed. The results indicate that GST vegetation has different cooling effects in different spaces, with a fitting value of 0.835 determined using GWR. Among these spaces, the areas with a significant cooling effect provided by grass are mainly located in the core commercial area of Futian District, which is densely populated by people and vehicles; the areas with a significant cooling effect provided by shrubs are mainly located in the industrial park in the south, which has the highest industrial heat emissions; the areas with a significant cooling effect provided by trees are mainly located in the core area of Futian, which is densely populated by roads and buildings. These are also the areas with the most severe heat island effect in Futian. This study expands our understanding of the relationship between roadside vegetation and the urban thermal environment, and has scientific significance for the planning and guiding of urban thermal environment regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834765PMC
http://dx.doi.org/10.3390/ijerph19031272DOI Listing

Publication Analysis

Top Keywords

thermal environment
24
street view
24
view images
16
vegetation types
16
roadside vegetation
12
urban thermal
12
types roadside
12
areas cooling
12
cooling provided
12
vegetation
9

Similar Publications

The development of stable, high-performance electrolytes is essential to addressing the safety concerns and limited lifespan caused by the thermal and chemical instability of traditional organic carbonate-based electrolytes in lithium-ion batteries (LIBs). This study examined the potential of mixed solvent systems, specifically ethyl methyl carbonate (EMC) and tetramethylene sulfone (TMS), to modify ion solvation and improve ionic conductivity in LIB electrolytes. Through molecular dynamics simulations, we investigated the solvation structure and transport properties of lithium ions (Li) in these solvent environments.

View Article and Find Full Text PDF

Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.

View Article and Find Full Text PDF

Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape.

View Article and Find Full Text PDF

Altering the generation route of reactive species is a potent means to augment the photocatalytic activity. In this study, MoS/MIL-101(Fe) S-scheme heterojunction (MF2) is prepared using a water/solvent thermal method for photocatalytic degradation of chlorsulfuron. Driven by the internal electric field, the local electron density of MF2 is redistributed, thus enhancing the adsorption of O.

View Article and Find Full Text PDF

Chemical associations of selenium oxyanions in metal oxides derived from layered double hydroxides: Implication for the immobilization of radionuclides.

Environ Res

January 2025

School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo 169-8050, Japan; Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan. Electronic address:

Layered double hydroxides (LDHs) can effectively stabilize Se oxyanions, yet the thermal stability of Se oxyanions incorporated into LDHs remains unclear. In this study, calcination products of three types of LDHs loaded with SeO2- 3 or SeO2-4 were analyzed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray absorption fine structure spectroscopy (XAFS) and leaching tests. It has been found that SeO2-4 can be reduced to SeO2- 3 in the Fe-containing LDHs after calcination at temperatures above 450 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!