Gross anatomy knowledge is an essential element for medical students in their education, and nowadays, cadaver-based instruction represents the main instructional tool able to provide three-dimensional (3D) and topographical comprehensions. The aim of the study was to develop and test a prototype of an innovative tool for medical education in human anatomy based on the combination of augmented reality (AR) technology and a tangible 3D printed model that can be explored and manipulated by trainees, thus favoring a three-dimensional and topographical learning approach. After development of the tool, called (Anatomical Education with Augmented Reality), it was tested and evaluated by 62 second-year degree medical students attending the human anatomy course at the International School of Medicine and Surgery of the University of Bologna. Students were divided into two groups: -based learning (" group") was compared to standard learning using human anatomy atlas ("Control group"). Both groups performed an objective test and an anonymous questionnaire. In the objective test, the results showed no significant difference between the two learning methods; instead, in the questionnaire, students showed enthusiasm and interest for the new tool and highlighted its training potentiality in open-ended comments. Therefore, the presented tool, once implemented, may contribute to enhancing students' motivation for learning, increasing long-term memory retention and 3D comprehension of anatomical structures. Moreover, this new tool might help medical students to approach to innovative medical devices and technologies useful in their future careers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834017 | PMC |
http://dx.doi.org/10.3390/ijerph19031024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!