Topological Optimization of Circular SAW Resonators: Overcoming the Discreteness Effects.

Sensors (Basel)

Department of Laser Measuring and Navigation Systems, Faculty of Information Measurement and Biotechnical Systems, Saint Petersburg Electrotechnical University (LETI), Popova Str., h. 5, 197376 Saint Petersburg, Russia.

Published: February 2022

Recently, we proposed a ring-shaped surface acoustic wave (SAW) resonator sensitive element design, as well as analyzed its characteristics and suggested its optimization strategy, with major focus on their temperature stability. Here, we focus on further optimization of the design to narrow the bandwidth and improve signal detection, while taking into account typical technological limitations. Additionally, the purpose of design optimization and modeling is to check the preservation of operability in the case of lithography defects, which is the most common technological error. For that, we suggest structural alteration of the interdigital transducer (IDT) that leads to its partial fragmentation. Using COMSOL Multiphysics computer simulations, we validate several IDT options and show explicitly how it could be optimized by changing its pin geometry. Based on the results of the study, prototyping and printing of ring resonators on a substrate using photolithography will be carried out.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840233PMC
http://dx.doi.org/10.3390/s22031172DOI Listing

Publication Analysis

Top Keywords

topological optimization
4
optimization circular
4
circular resonators
4
resonators overcoming
4
overcoming discreteness
4
discreteness effects
4
effects proposed
4
proposed ring-shaped
4
ring-shaped surface
4
surface acoustic
4

Similar Publications

High thermoelectric performance is generally achieved by synergistically optimizing two or even three of the contradictorily coupled thermoelectric parameters. Here we demonstrate magneto-thermoelectric correlation as a strategy to achieve simultaneous gain in an enhanced Seebeck coefficient and reduced thermal conductivity in topological materials. We report a large magneto-Seebeck effect and high magneto-thermoelectric figure of merit of 1.

View Article and Find Full Text PDF

This study aims to determine the optimal structure of the Beam Shaping Assembly (BSA) for an AB-BNCT (Accelerator-Based Boron Neutron Capture Therapy) facility. The aim is to maximize the possible depth of treatment for glioblastoma while ensuring that a treatment time constraint is not exceeded. Approach.

View Article and Find Full Text PDF

In this work, Density Functional Theory (DFT) on Gaussian 09 W software was utilized to investigate the phenylephrine (PE) molecule (C9H13NO2). Firstly, the optimized structure of the PE molecule was obtained using B3LYP/6-311 + G (d, p) and CAM-B3LYP/6-311 + G (d, p) basis sets. The electron charge density is shown in Mulliken atomic charge as a bar chart and also as a color-filled map in Molecular Electrostatic Potential (MEP).

View Article and Find Full Text PDF

Charge-carrier compensation in topological semimetals amplifies the Nernst signal and simultaneously degrades the Seebeck coefficient. In this study, we report the simultaneous achievement of both a large Nernst signal and an unsaturating magneto-Seebeck coefficient in a topological nodal-line semimetal TaAs single crystal. The unique dual-high transverse and longitudinal thermopowers are attributed to multipocket synergy effects: the combination of a strong phonon-drag effect and the two overlapping highly dispersive conduction and valence bands with electron-hole compensation and high mobility, promising a large Nernst effect; the third Dirac band causes a large magneto-Seebeck effect.

View Article and Find Full Text PDF

We report on a class of gapped projected entangled pair states (PEPS) with non-trivial Euler topology motivated by recent progress in band geometry. In the non-interacting limit, these systems have optimal conditions relating to saturation of quantum geometrical bounds, allowing for parent Hamiltonians whose lowest bands are completely flat and which have the PEPS as unique ground states. Protected by crystalline symmetries, these states evade restrictions on capturing tenfold-way topological features with gapped PEPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!