A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Learning a Metric for Multimodal Medical Image Registration without Supervision Based on Cycle Constraints. | LitMetric

Deep learning based medical image registration remains very difficult and often fails to improve over its classical counterparts where comprehensive supervision is not available, in particular for large transformations-including rigid alignment. The use of unsupervised, metric-based registration networks has become popular, but so far no universally applicable similarity metric is available for multimodal medical registration, requiring a trade-off between local contrast-invariant edge features or more global statistical metrics. In this work, we aim to improve over the use of handcrafted metric-based losses. We propose to use synthetic three-way (triangular) cycles that for each pair of images comprise two multimodal transformations to be estimated and one known synthetic monomodal transform. Additionally, we present a robust method for estimating large rigid transformations that is differentiable in end-to-end learning. By minimising the cycle discrepancy and adapting the synthetic transformation to be close to the real geometric difference of the image pairs during training, we successfully tackle intra-patient abdominal CT-MRI registration and reach performance on par with state-of-the-art metric-supervision and classic methods. Cyclic constraints enable the learning of cross-modality features that excel at accurate anatomical alignment of abdominal CT and MRI scans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840694PMC
http://dx.doi.org/10.3390/s22031107DOI Listing

Publication Analysis

Top Keywords

metric multimodal
8
multimodal medical
8
medical image
8
image registration
8
registration
5
learning
4
learning metric
4
registration supervision
4
supervision based
4
based cycle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!