Modeling the Voltage Produced by Ultrasound in Seawater by Stochastic and Artificial Intelligence Methods.

Sensors (Basel)

Department of Installations for Constructions, Transylvania University of Brașov, 5 Turnului Str., 900152 Brasov, Romania.

Published: January 2022

Experiments have proved that an electrical signal appears in the ultrasonic cavitation field; its properties are influenced by the ultrasound frequency, the liquid type, and liquid characteristics such as density, viscosity, and surface tension. Still, the features of the signals are not entirely known. Therefore, we present the results on modeling the voltage collected in seawater, in ultrasound cavitation produced by a 20 kHz frequency generator, working at 80 W. Comparisons of the Box-Jenkins approaches, with artificial intelligence methods (GRNN) and hybrid (Wavelet-ARIMA and Wavelet-ANN) are provided, using different goodness of fit indicators. It is shown that the last approach gave the best model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839338PMC
http://dx.doi.org/10.3390/s22031089DOI Listing

Publication Analysis

Top Keywords

modeling voltage
8
artificial intelligence
8
intelligence methods
8
voltage produced
4
produced ultrasound
4
ultrasound seawater
4
seawater stochastic
4
stochastic artificial
4
methods experiments
4
experiments proved
4

Similar Publications

Background And Purpose: Phentolamine is a non-selective α-adrenoreceptor antagonist used to reverse local anaesthesia, for example, during dental procedures when a vasoconstrictor is co-applied. Phentolamine-mediated vasodilation leads to faster clearance of injected drugs. Previous electrophysiological studies hypothesized that phentolamine acts as a modulator of voltage-gated sodium channels, which could conflict with its indication as local anaesthetic reversal agent.

View Article and Find Full Text PDF

A low-cost method of green hydrogen production via the modification of a lead acid battery has been achieved, resulting in a hydrogen flow rate of 5.3 L min from a 20-cell string. The electrochemical behavior and catalytic effect of various metal additives on the hydrogen evolution reaction (HER) was evaluated using cyclic voltammetry.

View Article and Find Full Text PDF

Microgrid systems have evolved based on renewable energies including wind, solar, and hydrogen to make the satisfaction of loads far from the main grid more flexible and controllable using both island- and grid-connected modes. Albeit microgrids can gain beneficial results in cost and energy schedules once operating in grid-connected mode, such systems are vulnerable to malicious attacks from the viewpoint of cybersecurity. With this in mind, this paper explores a novel advanced attack model named the false transferred data injection (FTDI) attack aiming to manipulatively alter the power flowing from the microgrid to the upstream grid to raise voltage usability probability.

View Article and Find Full Text PDF

Immunomodulatory effect of selective COX-2 inhibitor celecoxib on the neuropathological disorders and immunoinflammatory response induced by Kaliotoxin from Androctonus australis venom.

Toxicon

January 2025

USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria; Algerian Academy of Sciences and Technology, Villa Rais Hamidou, Chemin Omar Kachkar, El Madania, Algiers, Algeria. Electronic address:

The immune response is increasingly being linked to the pathogenic processes underlying neurological disorders including potassium channel malfunction. Few investigations, meanwhile, have shown how cyclooxygenase-2 (COX-2) is involved in the neuroimmunopathology linked to potassium channel failure. Thus, using an animal model of neuropathology caused by kaliotoxin, an exclusive blocker of voltage-gated potassium channels from the scorpion venom of Androctonus australis hector, we examined the immunomodulatory impact of celecoxib (selective inhibitor of COX-2).

View Article and Find Full Text PDF

Organic field-effect transistors (OFETs) integrated with commercial transistors are promising sensing platforms characterized by enhanced device uniformity, functional diversity, and electrical output stability. Aptamers with charged backbones and a high affinity for target molecules are anticipated to mitigate the limitations imposed by Debye screening in physiological environments with high ionic strength, thereby facilitating specific biological recognition in complex surroundings. This study presents two reliable OFET aptasensors for vascular endothelial growth factor (VEGF) and offers a systematic comparison of their performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!