This paper provides a summary of the recent developments with promising 2D MXene-related materials and gives an outlook for further research on gas sensor applications. The current synthesis routes that are provided in the literature are summarized, and the main properties of MXene compounds have been highlighted. Particular attention has been paid to safe and non-hazardous synthesis approaches for MXene production as 2D materials. The work so far on sensing properties of pure MXenes and MXene-based heterostructures has been considered. Significant improvement of the MXenes sensing performances not only relies on 2D production but also on the formation of MXene heterostructures with other 2D materials, such as graphene, and with metal oxides layers. Despite the limited number of research papers published in this area, recommendations on new strategies to advance MXene heterostructures and composites for gas sensing applications can be driven.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838671 | PMC |
http://dx.doi.org/10.3390/s22030972 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India.
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
This study introduces the development of a W-M electrochromic film, characterized by a "coral"-like TiO@WO heterostructure, synthesized via a hydrothermal process leveraging the inherent instability of MXene. The film showcases exceptional electrochromic performance, with a coloring response time of 2.8 s, a bleaching response time of 4.
View Article and Find Full Text PDFSmall
December 2024
Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
The design of mixed-dimensional heterostructures has emerged to be a new frontier of research as it induces exciting physical/chemical properties that extend beyond the fundamental properties of single dimensional systems. Therefore, rational design of heterostructured materials with novel surface chemistry and tailored interfacial properties appears to be very promising for the devices such as the gas sensors. Here, a highly sensitive gas sensor device is constructed by employing heterostructures of boron doped molybdenum disulfide quantum dots (B-MoS Qdots) assembled into the matrix of TiCT MXene.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
Photocatalytic water splitting holds great potential for transforming solar energy into valuable chemical products. However, obstacles such as the rapid recombination of electron-hole pairs and insufficiently active surface areas of photocatalysts remain significant challenges. In this study, we present the first demonstration that lithium bis(trifluoromethanesulfonyl)imide vapor successfully etches aluminum from NbAlC MAX phase powders while concurrently forming NbOF anchors on NbCT nanosheet (NbCTNS) MXene, leading to the in situ formation of a NbCTNS/NbOF heterostructure composite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!