In this work, we introduce and use an innovative approach for adaptive piecewise linear interval approximation of sensor characteristics, which are differentiable functions. The aim is to obtain a discreet type of inverse sensor characteristic, with a predefined maximum approximation error, with minimization of the number of points defining the characteristic, which in turn is related to the possibilities for using microcontrollers with limited energy and memory resources. In this context, the results from the study indicate that to overcome the problems arising from the resource constraints of smart devices, appropriate "lightweight" algorithms are needed that allow efficient connectivity and intelligent management of the measurement processes. The method has two benefits: first, low-cost microcontrollers could be used for hardware implementation of the industrial sensor devices; second, the optimal subdivision of the measurement range reduces the space in the memory of the microcontroller necessary for storage of the parameters of the linearized characteristic. Although the discussed computational examples are aimed at building adaptive approximations for temperature sensors, the algorithm can easily be extended to many other sensor types and can improve the performance of resource-constrained devices. For prescribed maximum approximation error, the inverse sensor characteristic is found directly in the linearized form. Further advantages of the proposed approach are: (i) the maximum error under linearization of the inverse sensor characteristic at all intervals, except in the general case of the last one, is the same; (ii) the approach allows non-uniform distribution of maximum approximation error, i.e., different maximum approximation errors could be assigned to particular intervals; (iii) the approach allows the application to the general type of differentiable sensor characteristics with piecewise concave/convex properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840239 | PMC |
http://dx.doi.org/10.3390/s22030949 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!