Ever since the introduction of fifth generation (5G) mobile communications, the mobile telecommunications industry has been debating whether 5G is an "evolution" or "revolution" from the previous legacy mobile networks, but now that 5G has been commercially available for the past few years, the research direction has recently shifted towards the upcoming generation of mobile communication system, known as the sixth generation (6G), which is expected to drastically provide significant and evolutionary, if not revolutionary, improvements in mobile networks. The promise of extremely high data rates (in terabits), artificial intelligence (AI), ultra-low latency, near-zero/low energy, and immense connected devices is expected to enhance the connectivity, sustainability, and trustworthiness and provide some new services, such as truly immersive "extended reality" (XR), high-fidelity mobile hologram, and a new generation of entertainment. Sixth generation and its vision are still under research and open for developers and researchers to establish and develop their directions to realize future 6G technology, which is expected to be ready as early as 2028. This paper reviews 6G mobile technology, including its vision, requirements, enabling technologies, and challenges. Meanwhile, a total of 11 communication technologies, including terahertz (THz) communication, visible light communication (VLC), multiple access, coding, cell-free massive multiple-input multiple-output (CF-mMIMO) zero-energy interface, intelligent reflecting surface (IRS), and infusion of AI/machine learning (ML) in wireless transmission techniques, are presented. Moreover, this paper compares 5G and 6G in terms of services, key technologies, and enabling communications techniques. Finally, it discusses the crucial future directions and technology developments in 6G.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839279 | PMC |
http://dx.doi.org/10.3390/s22030762 | DOI Listing |
Sci Data
December 2024
Slovak University of Technology, Faculty of Informatics and Information Technologies, Bratislava, 842 16, Slovakia.
In this paper, we describe the dataset captured with our proprietary data capture solution mounted on top of a Land Rover Defender vehicle. The captured data are the real data of drives on various Slovak roads. The total dataset consist of almost 33 hours of driving with a automotive grade FPD Link camera with 30 fps and with additional sensors such as high-precision GNSS sensor and modem towards mobile data connectivity LTE and 5 G.
View Article and Find Full Text PDFSci Rep
December 2024
Research Centre for Biomedical Engineering (RCBE), School of Science and Technology, City, University of London, Northampton Square, London, EC1V 0HB, UK.
Traditional methods for management of mental illnesses in the post-pandemic setting can be inaccessible for many individuals due to a multitude of reasons, including financial stresses and anxieties surrounding face-to-face interventions. The use of a point-of-care tool for self-management of stress levels and mental health status is the natural trajectory towards creating solutions for one of the primary contributors to the global burden of disease. Notably, cortisol is the main stress hormone and a key logical indicator of hypothalamic-pituitary adrenal (HPA) axis activity that governs the activation of the human stress system.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, China.
Due to its "ferroionic" nature, CuInPS combines switchable ferroelectric polarization with highly mobile Cu ions, allowing for multiple resistance states. Its conductive mechanism involves ferroelectric switching, ion migration, and corresponding intercoupling, which are highly sensitive to external electric field. Distinguishing the dominant contribution of either ferroelectric switching or ion migration to dynamic conductivity remains a challenge and the conductive mechanism is not clear yet.
View Article and Find Full Text PDFEcol Lett
December 2024
Florida State University, Tallahassee, Florida, USA.
Marine heatwaves (MHWs) caused by multiple phenomena with days to months duration are increasingly common disturbances in ocean ecosystems. We investigated the impacts of MHWs on pelagic communities using spatially resolved time-series of multiple trophic levels from the Southern California Current Ecosystem. Indices of phytoplankton biomass mostly declined during MHWs because of reduced nutrient supply (excepting Prochlorococcus) and were generally more sensitive to marine heatwave intensity than duration.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India.
Heat stress and pathogens are two serious yield-limiting factors of crop plants. Plants that previously experienced high but sub-lethal temperatures become subsequently tolerant to higher temperatures through the development of acquired thermotolerance (ATT). ATT activation is associated with the elevated expression of heat shock (HS)-related genes such as HSFA2, HSFA3, and HSP101.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!