War and Peas: Molecular Bases of Resistance to Powdery Mildew in Pea ( L.) and Other Legumes.

Plants (Basel)

All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Laboratory of Genetics of Plant-Microbe Interactions, Podbelsky Sh. 3, 196608 Saint-Petersburg, Russia.

Published: January 2022

Grain legumes, or pulses, have many beneficial properties that make them potentially attractive to agriculture. However, the large-scale cultivation of legumes faces a number of difficulties, in particular the vulnerability of the currently available cultivars to various diseases that significantly impair yields and seed quality. One of the most dangerous legume pathogens is powdery mildew (a common name for parasitic fungi of the order Erisyphales). This review examines the methods of controlling powdery mildew that are used in modern practice, including fungicides and biological agents. Special attention is paid to the plant genetic mechanisms of resistance, which are the most durable, universal and environmentally friendly. The most studied legume plant in this regard is the garden pea ( L.), which possesses naturally occurring resistance conferred by mutations in the gene (), for which we list here all the known resistant alleles, including discovered by the authors of this review. Recent achievements in the genetics of resistance to powdery mildew in other legumes and prospects for the introduction of this resistance into other agriculturally important legume species are also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838241PMC
http://dx.doi.org/10.3390/plants11030339DOI Listing

Publication Analysis

Top Keywords

powdery mildew
16
resistance powdery
8
resistance
5
war peas
4
peas molecular
4
molecular bases
4
bases resistance
4
powdery
4
mildew
4
mildew pea
4

Similar Publications

Effect of AM fungi on the growth and powdery mildew development of Astragalus sinicus L. under water stress.

Plant Physiol Biochem

December 2024

Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China. Electronic address:

Arbuscular mycorrhizal (AM) fungi are widely existing soil microorganisms that form symbiotic relationships with most terrestrial plants. They are important for enhancing adversity resistance, including resistance to disease and water stresses. Nevertheless, it is not clear whether the benefits can be maintained in regulating the occurrence of plant diseases under drought, flooding stress and during water restoration.

View Article and Find Full Text PDF

Positive regulation of a LuxR family protein, MilO, in mildiomycin biosynthesis.

Appl Environ Microbiol

December 2024

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

Mildiomycin is a representative peptidyl nucleoside antibiotic and was first isolated from , which has been used as an important biological agent to control powdery mildew in plants. Despite its importance, the biosynthetic pathways and regulatory mechanisms remain to be fully elucidated. In this study, we identified MilO as a positive pathway-specific regulator of mildiomycin biosynthesis in the heterologous host .

View Article and Find Full Text PDF

Background: Poa pratensis is a predominant cool-season turfgrass utilized in urban landscaping and ecological management. It is extensively employed in turf construction and in the regulation of ecological environments. However, it is susceptible to powdery mildew, a prevalent disease in humid regions.

View Article and Find Full Text PDF

Potential use of Apis mellifera L. honey in the management of the cucurbit powdery mildew caused by Podosphaera xanthii (Castagne) under greenhouse conditions.

Rev Argent Microbiol

December 2024

Facultad de Agronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico; Universidad Autónoma de Occidente, Unidad Regional Culiacán, Culiacán, Sinaloa, Mexico. Electronic address:

Powdery mildew by Podosphaera xanthii (Castagne) is a major disease of greenhouse cucurbitaceous crops worldwide. Honey by honeybees has been reported as an antimicrobial for diseases in humans, animals, and plants. The aim of this study was to assess Apis mellifera honey against P.

View Article and Find Full Text PDF

Powdery mildew (PM), caused by the biotrophic fungus Podospharea leucotricha, is a major threat to apple production. Plant-plant communication (PPC) is a crucial strategy for plant communities to enhance their defence against pathogens. The interconversion of methyl salicylate (MeSA) and salicylic acid (SA) is critical for PPC regulation, but the mechanism of MeSA-mediated PPC is not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!